

'A Low-Carbon Energy Transition in the ASEAN Region' 4th East Asia Energy Forum

ENYELIDIKAN TENAGA SURIA UNIVERSITI KEBANGSAAN MALAYSIA

Economic Research Institute for ASEAN and East Asia

Role of Biomass in Energy Transition

Dr. Norasikin Ahmad Ludin Associate Professor of Renewable Energy Solar Energy Research Institute, Universiti Kebangsaan Malaysia (UKM), Malaysia

nergy Transition: Policy & Biomass Development in Malaysia

BIOMASS ROLE IN ENERGY TRANSITION

2001–2010	2011–2016	2017 and current
Policy development		
2001–2010 - Five-fuel Diversification Policy	2011–2015 – 10 th Malaysia Plan	2016 – Net Energy Metering (NEM)
2001–2005 - 8 th Malaysia Plan	2011 – Renewable Energy Act (Act 725)	2018 – Midterm review 11 Malaysia Plan
2001 - SREP Programme	2011- SEDA Act (Act 726)	2018 – NEM 2.0
2002 - UNDP-GEF Biogen Project	2011 – Feed-In Tariff Programme	2020 – NEM 3.0
2006 – 2010 – 9 th Malaysia Plan	2011 – National Biomass Strategy 2020	2021–2025 – 12 th Malaysia Plan
2009 – National Green Technology Policy	2016–2020 – 11 th Malaysia Plan	2021 - RETR 2035
2010 – Economic Transformation Programme		
2010 - New Energy Policy	 The transition from SREP to the FiT has e 	ensure continuance of long term investment security for RE
Installed capacity (MW)	 the government has revised the curren 	t plan to raise the national target of renewable energy in el
	generation	n mix to 31% by 2025 and 40% by 2035
	RETR 2035 is expected to be one of the	12th Malaysia Plan formulation game-changers from 2021
1200	I I	

Source: Energy Commission Malaysia, 2011-2018. Sustainable Energy Development Malaysia, 2011-2018, Unit Perancang Ekonomi. RMKe-12, 2021-2025. Unit Perancang Ekon; 2021 F.S. Mohd Chachuli et al.

The Role of Biomass Energy in ASEAN & Malaysia

The IPCC stated that in order to keep global warming below 2°C and avoid the most dangerous consequences of climate change, GHG emissions must be reduced by 50-85% by 2050 – and peak no later than 2015.

Source: Fourth Assessment Report, the IPCC, 2020, Salleh et al., 2020

Malaysia currently has around 13.5GW (40%) of installed coalfired capacity and its monthly coal-fired power generation averaged 9.3GW in 2020.

Figure 4 ASEAN Total Installed Capacity of CFPP under the ATS. Source: (ACE, 2020)

Bioenergy Feedstock in Malaysia

The types, availabilities, and prices of bioenergy feedstock

Source: Mohd Idris MNM, Leduc S, Yowargana P, Kraxner F. Datasets and mathematical formulation of the BeWhere Malaysia model. https://dare.iiasa.ac.at/ 108/; 2020. Salleh et al. Energ Sustain Soc (2020) 10:38 https://doi.org/10.1186/s13705-020-00269-y

imated potential energy	ted potential energy by biomass type					Power generation (MW) for 7200 h	
omass type	Produced ^a (Million tonnes)	Dried ^b (Million tonnes)	Calorific value ^b (MJ/kg)	Total energy available (Million MJ)	Boiler efficiency		
					20%	30%	
m mesocarp fibre (PMF)	13.20	8.32	19.06	158,539	1223	1835	
m kernel shell (PKS)	5.38	4.73	20.09	95,096	734	1101	
pty fruit bunches (EFB)	21.52	7.10	18.88	134,053	1034	1552	
al					2991	4487	

Power generation potential of palm oil biomass (MW)

- Malaysia produces more than **103 million tons of biomass**, (agricultural waste, forest residues and municipal waste)
- Agricultural waste represents **91% of the biomass (most is derived from** palm oil mill residues)
- Malaysia is the 2nd largest palm oil producer (total plantation area of 5.6 million hectares, **485 mills to process** > **98 million FFB in 2018**)
- The estimated installed capacity potential from biomass generated at the mills (empty fruit bunches (EFB), palm mesocarp fibres (PMF) and palm kernel shell (PKS) is between 2400 and 7460 MW and 410 and 483 **MW** for biogas from palm oil mill effluent (POME)

Deployment of Biomass for Decarbonization

Enhanced Bioenergy Conversion Efficiency & Waste Management

Biomass Cofiring in Coal Power Plant

Malaysia to **reduce coal capacity by** 4.2GW by 2039

The Malaysian government plans to retire around **7GW of coal-fired capacity by 2039**, with Kapar Energy Venture's 1.5GW plant retiring in 2029, Tenaga Nasional Berhad's Janamanjung's 2GW plant retiring in 2030, Tanjung Bin Power's 2.1GW facility in 2031 and Jimah Energy Venture's 1.4GW unit in 2033.

Salleh et al. Energ Sustain Soc (2020) 10:38 https://doi.org/10.1186/s13705-020-00269-y

Peninsular Malaysia renewable target MD 4 Renewable in 2019/20 capacity * Large hydro was NOT included in the previous target

Biogas Conversion to Biomethane & Bio-Compressed Natural Gas (Bio-CNG)

Large-scale Biomass Power Plant

Malaysia energy transition plan's affordability concerns:

Lower renewable additions and a coal phase out

IS Markit

Coal to gas transition

7GW coal retirement by 2033

Coal plants will be retired at the end of 25 years PPA term

U new coal projects

Malaysia will not be building new coal power plants

60%~ gas demand increase

To replace the coal plants and serve the increasing demand

Information contained in this infographic is part of the IHS Markit Asia Pacific Regional Integrated Service

 (Δ)

Environment Impact & LCOE of Biomass Co-firing

- **Co-firing** offers a fast- track, low-cost opportunity to add renewable energy capacity economically.

Co-firing biomass with c	oal at one typical coal-f	Feedstock	LCOE (USD/kW)	GHG (gCO ₂ eq/kV	
almost 3,000 tons of coal per year , could divert up to about 5,000 tons of bio- mass from landfills, and will reduce net carbon dioxide			Wood chip	0.059	
			Rice husk	0.053	
(CO ₂) emissions by more than 8,000 tons per year.		Corn stalk	0.056		
Payback periods are typically between one and eight years, and annual cost savings could range from \$60,000 to \$110,000 for an average-size boiler.			Low Co-firing	150	
			Low Co-firing with CCS	1,038	
			Medium Co-firing	139	
These savings depend on the availability of low-cost biomass feedstocks.			Medium Co-firing with CCS	1,027	
Coal usage reduction	Biomass used	Annual CO ₂ saving	Retrofitting for 100% biomass	640	
(tons/yr)	(tons/yr)	(tons/yr)	20% biomass co-fired		742 ~ 750
2,947	5,057	8,103	20% biomass co-fired with CCS		-79 ~ -130

Notes:

- Industrial stoker boilers operating today.
- Assumptions for the average project were: 120,000 lb/hr steam capacity per boiler, 2 boilers at site, 15% heat from biomass, a 25% capacity factor.
- Depending on the source of biomass, "biomass used" could be avoided landfilled material.
- Carbon savings can easily be calculated from CO₂ savings (i.e., carbon savi = $12 / 44 \times CO_2$ savings).

Source: Federal energy management program

6

	Co-Firing		g(O2 Equivalent l	Emissions/kW	/h	
~	Ratio	Farmed Trees	with CCS	Switchgrass	with CCS	Forest residue	W
	0%	893	143	893	143	893	
	5%	861	90	864	93	862	
	10%	825	34	829	41	826	
inae	15%	783	-22	790	-12	785	
ings	20%	742	-79	751	-65	744	
	100%	61	-1449	121	-1345	7.9	

Amanda D.C et al, Energies 2015, 8, 1701-1715; doi:10.3390/en8031701

Issue & Challenges of Biomass Co-firing

Poor fuel economy	Coal-biomass co-firing is not ve its reliance on policy sup
Unstable biomass supply	Biomass collection, seasonal purchase price is
Negative effect on boiler	Low calorific value and high me causing boiler combustion effic
Imperfection of relevant supporting policies	Incentive policy for biomass compensation mechanism consumption. Electricity price biomass power generation iss
	terms of electricity, there is a degree of policy inclin
Difficulties in government	

Difficulties in government supervision

It is difficult to accurately measure the biomass fuel entering the boiler and biomass power generation for the coal-biomass co-firing power generation technology

CCS Challenges in Malaysia

- first applications for a CDM methodology for CCS.
- industries that form the basis of its economy and the increasing CO₂ content of its remaining natural gas reserves.

The double counting measure: gives an administrative energy bonus and thus economic value to some biofuel production pathways, it has no budgetary impact

Binding blend-in target: an achievable sub-target for advanced biofuels would secure a market share. It would also reduce investment risk and lower competition with well-established biofuel production pathways

Tax incentives: could be implemented in the EU Energy Taxation Directive, which is currently under revision

Production support/feed-in tariff: initial fixed sales prices or fixed premiums help improve the business case for the investors that are needed to build the first wave of commercial-scale projects.

The greatest challenge for CCS deployment in Malaysia is funding. In fact, state oil and gas producer, Petronas, sponsored one of the

• The Global GCCS Institute (GCCSI) has suggested that CCS will be of increasing interest to Malaysia, due to the resource and power

Policy Scenarios & Recommendation

Mandating Bio-CCS: Government would impose carbon taxes or standards to encourage shift from fossil fuel power Plant towards alternative fuels, such as biomass and carbon capture and storage system.

Funding Bio-CCS: Government should hand out resources to bio-CCS production by fixed payment rate on carbon Captured and stored, and guarantee a higher price for bio-CCS energy producers.

Persuasion of Bio-CCS: Government should convene multi-stakeholders and industry roundtable for bio-CCS transition Case through knowledge transfer and accreditation scheme to produce, distribute and advertise the technology.

- on biomass feedstock and power generation)
- Reasonably plan the location of coal-biomass co-firing power plants (nearby existing coal power plant)
- State support and supervision (stakeholders engagement from various organisations)

Optimize the biomass purchase system (Initiate local and regional supply chain, long fuel contract agreement, revision of PPA

Strengthen research on coal-fired coupled biomass power generation technology (Proof of concept – demonstration plant)

THANK YOU Homepage: www.ukm.my/seri Email: sheekeen@ukm.edu.my

