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Abstract: Unlike studies that analyse the impact of robotics technology on 

employment at the industry or firm level, this study investigates cross-division 

employment adjustment within a firm in an industry with large penetration and 

diffusion of robotics technology. By examining the changes in the composition of 

employment, we measured job creation and destruction at the division level and 

explored whether robotics technology, as a leading example of automation, not 

only displaces workers but also introduces new jobs in favour of labour. We made 

use of unique, division-level employment data for Japan’s manufacturing firms, 

together with industry-level data on the installation of industrial robots. We found 

that industry-level adoption of robots positively affects the rates of firm-level job 

creation and job destruction. Because the magnitude of the impact is larger for 

job destruction, robot adoption has an overall negative impact on firms’ net 

employment growth. Our finding suggests that the labour displacement effect of 

robotics technology and the emergence of new jobs due to technological change 

coexist even at the firm level.  
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1.  Introduction 

Many industries are on the verge of a second digital revolution known as the 

fourth industrial revolution (Makridakis, 2017). With the challenges arising from 

an ageing society and labour shortage, especially in advanced economies, industrial 

digitalisation, robotics technology, and artificial intelligence will play a significant 

role in helping countries make the transition. Figure 1 shows a clear growing trend 

of installation of industrial robots together with a downward trend of the working 

population ratio. The utilisation of robotics technology seems inevitable in Japan 

and in other highly mature economies.  

Figure 1. Robots Installed and Working Population in Japan 
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Source: Authors’ calculation using data for industrial robots (World Robotics database) and working 

population ratio (Federal Reserve Economic Data). 

 

The adoption of industrial robots or automation can help Japan’s industries 

ease the burden, but the acceleration of automated tasks that used to be performed 

by labour raises concerns that new technologies will make labour redundant (e.g. 

Brynjolfsson and McAfee [2012], Akst [2014], Autor [2015]). The main cause of 

concern is the replacement of humans by machines and other technology to perform 

certain types of jobs. Technology could make the production process more capital-

intensive by automating labour-intensive tasks. The loss of advantage conferred by 

cheap labour might result in concentrated production tasks in developed countries. 

Therefore, countries that specialise in the labour-intensive part of the supply chain 

might see jobs evaporate. Within an industry, routine workers, who are more likely 

to be replaced by robots, are more prone to job loss. 
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If we go a step further and examine the within-firm labour structure, the 

situation is even more complicated. Manufacturing firms usually have different 

divisions with various functions: sales, marketing, production, research and 

development (R&D), and administration, amongst others. In some divisions such 

as R&D, it is common practice for firms to hire the most talented workers, while in 

production or assembly divisions, firms tend to recruit ‘unskilled’ workers. In other 

divisions, workers with different skill levels are mixed. Most studies tended to look 

at net employment growth of firms and failed to identify within-firm labour 

dynamics caused by automation. Since the net employment growth is the difference 

between total job creation and job destruction within a firm, detecting the overall 

impact does not necessarily mean job creation and job destruction occurring in the 

same direction. Thus, the conventional argument on the substitution or 

complementation relationship between labour and automation for skilled or 

unskilled categorisations cannot be simply applied if we use overall labour changes. 

This study will fill this blank by separating job creation from job destruction and 

investigate whether automation affects them in different ways.  

Unlike the literature, this study defines job creation as the aggregated number 

of newly added jobs for all divisions within a firm, and job destruction as the 

aggregated number of newly eliminated jobs for all divisions. One obvious 

advantage of such a measurement is that the individual impact of foreign direct 

investment on job creation and destruction can be captured, which helps elucidate 

firm’s decision-making from different perspectives. 

The next section reviews related literature. Section 3 describes the data. 

Section 4 introduces the estimation strategy. Section 5 shows the estimation results. 

Section 6 provides the robustness check. The final section offers conclusions and 

policy recommendations.  
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2.  The Literature and the Contribution of This Study 

This study is broadly related to the literature on the implications of 

technological change for employment, wages, and productivity (see Acemoglu and 

Autor [2011] for a survey). Although how the introduction of new technology 

transforms the labour market is not a new question, the ongoing process of 

automation such as advances in robotics technology has triggered renewed concern 

about massive joblessness. Frey and Osborne (2017), for example, estimated that 

47% of total United States (US) employment is in occupations that are potentially 

automatable in a decade or two. The argument about which jobs are susceptible to 

automation, however, does not speak to the equilibrium impact because it overlooks 

how other industries and occupations will respond to the changes (Acemoglu and 

Restrepo, 2020). The equilibrium impact on employment and wages of automation 

technologies, and especially the increased use of industrial robots, was recently 

investigated, theoretically and empirically, in a series of papers by Acemoglu and 

Restrepo (2018, 2019, 2020).  

Acemoglu and Restrepo (2018) made the first attempt to develop a task-based 

framework to study the implications of automation technology for the labour market. 

Their conceptual innovation was to propose a theoretical model in which tasks 

previously performed by labour are automated (‘displacement effect’), whilst new 

technologies introduce new tasks in which labour has comparative advantage 

(‘reinstatement effect’). The authors presumed that automation, together with the 

associated introduction of new tasks, impacts the task content of production by 

changing the allocation of tasks to factors of production. Such presumption is 

consistent with what we are witnessing amidst rapid automation due to advances in 



6 

robotics technology: whilst the tasks of production workers are being performed by 

industrial robots, tasks are emerging related to programming, design, maintenance, 

and other more specialised tasks (Acemoglu and Restrepo, 2019). Acemoglu and 

Restrepo (2018) documented the fact that about half of employment growth in the 

US over 1980–2015 took place in occupations with new job titles or tasks. 

Based on the task-based framework, Acemoglu and Restrepo accumulated 

empirical evidence supporting the relative importance of the displacement effect 

for industrial robots – as a leading example of automation technology – unlike 

capital deepening or other types of factor-augmenting technologies. Acemoglu and 

Restrepo (2020) showed that industrial robots are associated with lower labour 

share and labour demand at the industry level and lower labour demand in local 

labour markets exposed to the technology in the US. Acemoglu and Restrepo (2019) 

showed that the sluggish growth of US employment over the last 3 decades is 

accounted for by a stronger displacement effect, especially in manufacturing, and a 

considerably weaker reinstatement effect than in previous decades. 

Applying the empirical methodology of Acemoglu and Restrepo (2020), the 

local labour market effects of industrial robots were studied in Japan (Adachi et al., 

2020) and Germany (Dauth et al., 2018). Unlike in the US, both studies found no 

significant effect of industrial robots on total employment in local markets. Looking 

into changes in the composition of employment, Adachi et al. (2020) detected a 

positive correlation between exposure to robotics technology and demand for 

production workers in Japan’s local labour markets. In contrast, Dauth et al. showed 

that robots led to job losses in manufacturing, which were offset by the expansion 

of business service industries in Germany’s local labour markets. Instead of 

exploring the local labour market effect, Graetz and Michaels (2018) conducted 
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cross-country cross-industry comparisons and found that industrial robots did not 

reduce overall employment but significantly reduced employment of low-skilled 

workers. 

Departing from the aggregate equilibrium impacts of industrial robots, a 

handful of studies recently explored the mechanisms and adjustment processes at 

the level of firms (e.g., Koch et al. [2019]) and workers (Dauth et al., 2018). Using 

a rich dataset of manufacturing firms in Spain, Koch et al. estimated the effect of 

robotics technology on firm-level outcomes, including employment, and showed 

that robot-adopting firms raised the number of workers in high- and low-skilled 

groups. Using employer–employee data in Germany, Dauth et al. analysed the 

impact of robotics technology on individual workers and found that workers in 

manufacturing industries with larger diffusion of robotics technology were more 

likely to continue working with the original employer. The authors found that many 

incumbent workers responded to technological change by performing more diverse 

occupations at their original workplace than before, which suggests the importance 

of within-firm employment adjustment to the change. 

This study contributes to the literature by shedding light on the impact of 

industrial robots on the creation and destruction of jobs across different groups of 

activities or divisions within a manufacturing firm. We analyse whether a 

manufacturing firm in an industry with larger diffusion of robotics technology 

simultaneously expanded or shrank employment in different production and non-

production divisions. Our firm-level study complements the worker-level evidence 

of Dauth et al. (2018) by presenting additional supporting evidence of significant 

within-firm employment adjustment to robotics technology. Our findings of 

massive job creation as well as destruction can be interpreted through the lens of 
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Acemoglu and Restrepo’s task-based framework, and suggest that robotics 

technology not only displaces some workers from their original job titles or tasks 

but also simultaneously brings in a set of new tasks in favour of labour even at the 

firm level.  

To examine within-firm employment adjustment in response to industry-level 

robotics technology diffusion, we used division-level employment data for 

manufacturing firms obtained from the Basic Survey of Japanese Business 

Structure and Activities (BSJBSA). We not only looked at overall change in 

employment at the firm level but also paid attention to the simultaneous expansion 

and shrinkage of employment in different divisions even within a single firm, in 

line with Liu (2018) and Liu and Bin (2018).  

The standard measurement of job creation is the aggregation of net 

employment increases across all establishments that expand employment, and of 

job destruction the aggregation of net employment decreases across all 

establishments that downsize (see Davis et al. [1996]). Aggregations are typically 

done by industry or by the group of establishments (or firms) in terms of the firm 

size, extent of internationalisation, and so on. Gross job flows are the sum of job 

creation and destruction, and net job flows are their difference. 

In Japan’s context, for example, Ando and Kimura (2015) and Kodama and 

Inui (2015) applied the above measurements to analyse the effect of foreign direct 

investment on gross and net changes in domestic employment. These and most 

related studies might have underestimated actual employment adjustment because 

they overlooked the jobs created and destroyed within a firm. The exceptions are 

Ando and Kimura (2017), Liu (2018), and Liu and Bi (2018), who calculated job 

creation (destruction) at the firm level by aggregating net employment increases 
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(decreases) across the expanding (downsizing) divisions. To better approximate 

employment adjustment by manufacturing firms in Japan, we follow the latter 

strand of related literature. 

To be more precise, we employed the measurements of job creation and 

destruction originally proposed by Liu (2018), using the BSJBSA. Within a 

manufacturing firm, we considered the net changes in employment in divisions, 

including not only production but also non-production divisions such as R&D and 

commercial activities. Unlike Moser et al. (2010), who used establishment data 

from Germany, we could not identify a new hire from outside one firm or any 

separation of a worker from the firm at the division level by using the BSJBSA. 

More importantly, however, our measurements of job creation and destruction 

captured within-firm inflows and outflows of workers across divisions in addition 

to employment reallocation across firms. The cross-division employment 

adjustment involved incumbent workers performing different tasks under different 

occupations than before. This is of interest to us in examining how firms respond 

to the diffusion of robotics technology at the industry level. 

 

3.  Data 

3.1. Data Source 

We combined data from two separate sources. First, firm-level data was 

obtained from the BSJBSA, which is conducted annually by the Ministry of 

Economy, Trade, and Industry. The survey’s response rate is over 80% with about 

30,000 firms completing the questionnaire each year. The BSJBSA’s scope covers 

almost all medium-sized and large firms in Japan and includes smaller firms that 
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employ 50 or more workers and have ¥30 million or more worth of capital. We 

focused our analysis on manufacturing firms in operation from 1996 to 2017. 

We used detailed information on the composition of employment: the 

respondent firm reported the total number of ‘full-time workers’ broken down into 

different divisions by function for corporate headquarters or main office 

(headquarter-function and operations sections) and for affiliated establishments 

(domestic only). 12  The headquarter-function section is disaggregated into five 

divisions: planning; information processing; R&D; international business; and 

other headquarter functions (e.g. accounting, human resource management). The 

operations section is disaggregated into six divisions: manufacturing, mining, 

electricity, and gas; commercial business; eating and drinking places; information 

and communications; service business; and other operational functions. The 

affiliated establishments have eight divisions: manufacturing, mining, electricity 

and gas; commercial business; eating and drinking places; information and 

communications; service business; research institutions; warehouse, transportation, 

and distribution; and other functions.  

We presumed that workers were performing different sets of tasks or jobs in 

different divisions. Although tasks might be diverse even within a division, we 

supposed that cross-division variations of tasks were much more diverse than 

within-division variations. If the number of workers declined in some divisions (i.e. 

job destruction) whilst the number of workers increased in the others (job creation), 

we interpret such dual changes in the composition of employment as suggesting 

that job displacement was accompanied by the introduction of new jobs. 

 
1  The BSJBSA defines ‘full-time workers’ as those who have been employed for a period 

unspecified or at least 1 month. Full-time workers include regular employees, regular staff members, 

part-timers, and casual employees. For example, ‘temporary workers’ are employed for less than 1 

month or brought in on a daily basis and are not, therefore, full-time workers. 
2 The hours worked are not reported by division.  



11 

 Second, the data for industrial robots were obtained from the International 

Federation of Robotics (IFR, 2018) World Robotics database, which has received 

increasing attention in recent studies: e.g. a pioneering study of Graetz and 

Michaels (2018), followed by Acemoglu and Restrepo (2019, 2020) and Dauth et 

al. (2018). The database provided the number of industrial robots delivered (‘flow’) 

and the number in operation (‘operational stock’) by country and industry from 

1993 onwards. The industrial robots under the IFR’s definition are ‘an automatically 

controlled, reprogrammable, multipurpose manipulator programmable in three or 

more axes, which might be either fixed in place or mobile for use in industrial 

automation applications’ as defined by ISO 8373. 

 All the data on Japan reported in World Robotics was based on domestic 

shipment statistics by demand industry, which was originally provided by the Japan 

Robot Association (JARA). The original JARA documents (JARA, 2012–2018) 

showed only the number of industrial robots delivered domestically. In contrast, 

World Robotics reported the number of delivered robots, which included not only 

domestic shipments but also imports. The IFR appears to have estimated the 

imported figures based on its own information collected from global major 

manufacturers of industrial robots.3 The original JARA documents did not report 

operational stock data. Upon the request from the IFR for the operational stock 

figures, the JARA arbitrarily calculated the stock of robots as the total number of 

delivered robots in the past 10 years.4  

  

 
3 JARA domestic shipment data are available in a consistent format only from 2001. For data on 

Japan before 2001 reported in World Robotics, the IFR appears to have substantially manipulated 

data to obtain the estimated figures, although IFR documents offered no explanation on this matter. 
4 In the World Robotics database, operational stock was simply calculated as the total number of 

delivered robots in the past 12 years for most of the sample countries. There is no clear explanation 

why the JARA chose 10 instead of 12 years to consider robot depreciation. 
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 As our main variable of interest, we used the flow data of the number of 

delivered robots rather than the operational stock data. This is because, due to the 

arbitrary calculation, Japan’s operational stock was almost unchanged from the 

early 1990s through the 2000s, and declined continuously after 2010. Our sample 

period extended to 2017, so operational stock figures beyond 2010 were 

significantly lower because of the global financial crisis of 2008–2009. Such a 

measurement issue would underestimate the dynamics of industries utilising 

industrial robots, especially in the 2010s. Thus, we believe that the flow data of 

delivered robots is a better measurement to capture the penetration of robotics 

technology.  

 We relied mainly on the flow data of the number of delivered robots obtained 

from the World Robotics online database. We also manually collected data on the 

value of domestically delivered robots from JARA publications (JARA, 2012–

2018) to check for robustness.5 Unlike World Robotics, the JARA reported not only 

the units but the total monetary values (in yen) of domestically delivered robots by 

demand industry. The value information reflected the relative magnitude of 

investments in robotics technology that could be compared across industries as well 

as over time, although it was available only for domestic shipments.6  

Data on industrial robots were organised at the industry level according to the 

latest version of International Standard Industrial Classification (ISIC), Revision 4. 

We constructed the robot flow measure at the 2-digit level of the ISIC, Revision 4 

across years, which was matched with firm-level employment data. 

 

 
5 For the robustness check, we used ‘robot density’, which is the number of industrial robots in 

operation (i.e. operational stock) per 1,000 persons employed and is often used in the related 

literature. To calculate robot density, we obtained data for total employment by country and industry 

from the Organisation for Economic Co-operation and Development Structural Analysis database, 

and data for stock of operational robots by country and industry from the World Robotics database.  
6 More sophisticated robots have recently entered the market, taking the place of simple ones. 
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4.  Empirical Methodology and Identification Strategy 

4.1.  Job Creation and Destruction 

The idea of calculating job creation and destruction is similar to that of Davis 

and Haltiwanger (1999); the essential difference is that our calculations are at the 

division level. First, the magnitude of job creation in firm i in year t is defined as 

the sum of all new jobs in expanding divisions of firm i in year t: 

𝐽𝐶𝑖,𝑡 = ∑ ∆𝑁𝑖,𝑑,𝑡
𝐶

𝑆

𝑑=1

 

with  

∆𝑁𝑖,𝑑,𝑡
𝐶 = 𝑁𝑖,𝑑,𝑡 − 𝑁𝑖,𝑑,𝑡−1 , 

conditioned on 

𝑁𝑖,𝑑,𝑡 − 𝑁𝑖,𝑑,𝑡−1 < 0, 

where d denotes each division of firm i and S is the total number of divisions in firm 

i. 𝑁𝑖,𝑑,𝑡 is the number of workers employed in division d of firm i in year t. 

 Similarly, the magnitude of job destruction in firm i in year t is defined as the 

sum of all disappeared jobs in downsizing divisions of firm i in year t, represented 

as follows: 

𝐽𝐷𝑖,𝑡 = ∑ ∆𝑁𝑖,𝑑,𝑡
𝐷

𝑆

𝑑=1

 

with  

∆𝑁𝑖,𝑑,𝑡
𝐷 = −(𝑁𝑖,𝑑,𝑡 − 𝑁𝑖,𝑑,𝑡−1), 

conditioned on 

𝑁𝑖,𝑑,𝑡 − 𝑁𝑖,𝑑,𝑡−1 < 0. 
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In general, the average level of JD is higher than that of JC, which leads to on 

average negative net employment growth in most manufacturing industries.7 This 

is in accordance with the trend that the total number of employees in manufacturing 

is shrinking. The exceptions are ‘automotive’ and ‘electrical equipment’, where 

continued and increased need for labour persists. 

4.2.  Data Overview of Job Creation, Job Destruction, and Robotics 

Technology 

   Figure 2 compares the calculated job creation (JC) and job destruction (JD), 

averaged across firms and years, amongst manufacturing industries. The larger the 

number of workers, the larger the values of JC and JD tend to be. To adjust for the 

size of employment varying across firms, we looked at the rates of JC (JCR) and 

JD (JDR) defined as follows: 

𝐽𝐶𝑅𝑖𝑡 =
𝐽𝐶𝑖𝑡

(𝑁𝑖𝑑𝑡+𝑁𝑖𝑑𝑡−1)/2
;  𝐽𝐷𝑅𝑖𝑡 =

𝐽𝐷𝑖𝑡

(𝑁𝑖𝑑𝑡+𝑁𝑖𝑑𝑡−1)/2
. 

 In most manufacturing industries, JD (red bars) was, on average, greater than 

JC (blue bars), accompanied by a negative growth rate of net employment (green 

bars). This is in accordance with the trend that the total number of employees in 

manufacturing is shrinking. The exceptions are ‘automotive’ and ‘pharmaceuticals’, 

in which continuing and increasing needs for labour persist.8 

 Figure 3 shows the by-industry distribution of the number of industrial robots 

delivered across years. Amongst manufacturing industries, ‘automotive’, which 

requires a lot of assembly work and is demanding in terms of precision, adopted the 

largest number of robots, indicating the need for automation. Others, such as 

 
7 See Table A1 for the yearly average figures for all manufacturing sectors. 
8 See Table A1 for the yearly figures of JCR, JDR, and net employment change rate averaged 

across firms for all manufacturing industries. 
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‘computer and electronic’ and ‘electrical equipment’, also had high levels of robot 

installation, as expected.  

  In general, the industries that adopted the most robots (Figure 3), such as 

‘automotive’. ‘computer and electronic’, and ‘electrical equipment’, experienced 

relatively large job creation and destruction (Figure 2). 

Figure 2: Job Creation and Destruction Rates, Averaged across Firms and 

Years 1996–2017, by Industry 

 
JCR = job creation rate, JDR = job destruction rate. 

Note: Both JCR and JDR, by definition, take non-negative values. Net employment change rate can 

be positive or negative. 

Source: Authors, using firm-level employment composition data (Basic Survey of Japanese Business 

Structure and Activities). 
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Figure 3: Number of Robots Delivered, 1996–2017, by Industry 

 
Source: Authors, using industrial robots data (World Robotics). 

 

4.3.  Baseline Estimation 

 To explore how the adoption of robots affected within-firm job creation and 

destruction, we consider the following baseline equation of job creation to be 

estimated using fixed-effects model: 

𝑗𝑜𝑏_𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑖𝑗𝑡 = 𝛼1𝑅𝑜𝑏𝑜𝑡_𝑓𝑙𝑜𝑤𝑗𝑡 + 𝛼2𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑖𝑗𝑡 + 𝛼𝑖 + 𝛼𝑗 +

𝛼𝑡 + 𝜀𝑖𝑗𝑡
𝑗𝑐

, (1) 

where 𝑗𝑜𝑏_𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑖𝑗𝑡  refers to jobs created in firm i of industry j at year t. 

𝑅𝑜𝑏𝑜𝑡_𝑓𝑙𝑜𝑤𝑗𝑡 is the number of robots installed per 1,000 workers in industry j (2-

digit level) at time t. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑖𝑗𝑡 is a group of control variables, which 

include whether the firm belongs to the manufacturing industry, capital–labour ratio, 

R&D ratio with respect to sales, revenue, total employment, foreign capital rate, 

and firm age, amongst others. We include firm, year–industry fixed effects as well. 

Adverse shocks that destroy (or create) jobs are not included in the estimation 

equation because firms are not able to predict such shocks. 𝜀𝑖𝑗𝑡
𝑗𝑐

 is firm-specific 

error term. We estimate job destruction in the same manner.  
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4.4.  Endogeneity Issues 

Apart from the omitted variable problem, one might argue that firms 

operating in industries with high robot adoption rates are more exposed to high 

technology, and from the point view of minimising cost, intense competition can 

cause firms to adjust labour more frequently than in other industries. If so, self-

selection bias would occur. To further identify the causal impact of the diffusion of 

robotics technology on job creation and destruction, we first applied an instrument 

variable (IV) method. An ideal candidate is one that is closely related to robot 

adoption in Japan’s manufacturing industries but does not affect employment 

adjustment within Japan’s manufacturing firms. Since our variable of interest is at 

the industry level (robot flow), the IVs that we can naturally consider are industry-

level measures. Fortunately, we have access to the data of robot flow in the US, the 

Republic of Korea, the whole North American region, and other regions. Taking 

into account that robot application trends in advanced economies are similar to one 

another (confounding condition), robots adopted in US industries will have a less 

substantial impact on labour reallocation within firms in Japan (exclusion 

condition). Thus, we used the robot flow by 2-digit industry in the US and the whole 

North American region as the instrument and conducted IV estimation. We tested 

the credibility of the instruments by calculating the correlation between the variable 

of interest and the instruments. The robot applications in Japan, the US, and the rest 

of North America have a highly positive correlation with each other (Figure 4, 

Figure 5). The weak instrument test was conducted in the analysis.  
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Figure 4: Correlation of Robot Flows between Japan and the United States 

 

 
Source: Authors, using industrial robots data (World Robotics) for 2011–2017. 

 

Figure 5: Correlation of Robot Flows between Japan and North America 

 

 
Source: Authors, using industrial robots data (World Robotics) for 2004–2017. 
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5.  Estimation Results 

5.1.  Some Simple Regression Results 

Table 1. Baseline Estimation 

 (1) (2) (3) (4) (5) (6) 

Dependent 

Variable 

jc jd net 

employ. 

jcr jdr net 

employ. 

rate 

ln(𝑅𝑜𝑏𝑜𝑡𝐹𝑙𝑜𝑤𝑗𝑡) 6.036*** 8.838*** -3.868* 0.0159*** 0.0136*** -0.00176 

 (1.882) (1.952) (2.123) (0.00438) (0.00428) (0.00359) 

ln(𝐾𝐿𝑖𝑗𝑡) -

32.15*** 

-2.858 -

33.43*** 

-

0.0284*** 

0.0394*** -

0.0692*** 

 (3.795) (4.196) (4.141) (0.00214) (0.00279) (0.00340) 

𝑅&𝐷𝑖𝑗𝑡 -19.20** -16.88** -8.500 -

0.0496*** 

-0.0322** -0.00521 

 (9.294) (8.466) (12.43) (0.0160) (0.0152) (0.0102) 

𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑗𝑡 -0.00258 0.0324 -0.0461 -1.41e-05 -1.25e-05 2.55e-06 

 (0.0437) (0.0536) (0.0292) (1.45e-05) (1.35e-05) (1.10e-05) 

𝐴𝑔𝑒𝑖𝑗𝑡 -0.00212 -0.00250 0.00724 -1.61e-07 2.76e-06 2.30e-06 

 (0.01000) (0.00883) (0.00816) (8.36e-06) (7.37e-06) (9.71e-06) 

ln(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑗𝑡) 16.34*** 8.714*** 8.163*** 9.12e-05 -

0.0166*** 

0.0183*** 

 (2.204) (2.685) (2.665) (0.00240) (0.00261) (0.00233) 

Firm fixed effects Yes Yes Yes Yes Yes Yes 

Industry_year fixed effects Yes Yes Yes Yes Yes Yes 

Observations 160,439 160,439 145,334 145,334 145,334 145,334 

R-squared 0.007 0.005 0.009 0.021 0.023 0.056 

Number of eternal_no 21,811 21,811 20,136 20,136 20,136 20,136 

Note: Estimated coefficients are accompanied by robust standard errors in parentheses. Asterisks 

denote statistical significance: *** p<0.01, ** p<0.05, * p<0.1. 

Source: Authors, using data for firm-level employment composition (Basic Survey of Japanese 

Business Structure and Activities) and industrial robots (World Robotics). 
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Table 2. Instrument Variable Estimation 

 (1) (2) (3) (4) (5) (6) 

Instrument Robot flow in the United States Robot flow in the whole North 

American region 

Dependent 

Variable 

jcr jdr net 

employ. 

rate 

jcr jdr net 

employ. 

rate 

ln(𝑅𝑜𝑏𝑜𝑡𝐹𝑙𝑜𝑤𝑗𝑡) 0.000938 0.0166** -0.0113** 0.00122 0.00889** -

0.00737*** 

 (0.00805) (0.00834) (0.00522) (0.00431) (0.00425) (0.00284) 

ln(𝐾𝐿𝑖𝑗𝑡) -

0.0395*** 

0.0341*** -0.0787*** -

0.0380*** 

0.0343*** -0.0736*** 

 (0.00375) (0.00388) (0.00243) (0.00243) (0.00239) (0.00160) 

𝑅&𝐷𝑖𝑗𝑡 -0.0139 -0.0351 0.0253* -0.0323** -0.0285* 0.00727 

 (0.0218) (0.0226) (0.0141) (0.0157) (0.0155) (0.0103) 

𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑗𝑡 3.15e-05 -0.000156 9.58e-05 2.85e-05 3.10e-05 -5.07e-06 

 (0.000188) (0.000194) (0.000122) (2.20e-05) (2.17e-05) (1.45e-05) 

𝐴𝑔𝑒𝑖𝑗𝑡 -0.000522 -

0.00116*** 

0.00133*** 3.69e-06 7.52e-06 5.20e-06 

 (0.000410) (0.000425) (0.000266) (1.08e-05) (1.06e-05) (7.12e-06) 

ln(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑗𝑡) 0.0105* -0.0391*** 0.0499*** -0.00144 -

0.0322*** 

0.0323*** 

 (0.00546) (0.00566) (0.00354) (0.00313) (0.00309) (0.00207) 

Firm fixed effects Yes Yes Yes Yes Yes Yes 

industry_year fixed 

effects 

Yes Yes Yes Yes Yes Yes 

Observations 36,806 36,806 36,806 75,274 75,274 75,274 

Number of 

eternal_no 

8,029 8,029 8,029 11,938 11,938 11,938 

Cragg-Donald Wald 

F statistic 

971.567 971.567 971.567 2075.695 2075.695 2075.695 

Note: Estimated coefficients are accompanied by robust standard errors in parentheses. Asterisks 

denote statistical significance: *** p<0.01, ** p<0.05, * p<0.1. 

Source: Authors’ calculation using data for firm-level employment composition (Basic Survey of 

Japanese Business Structure and Activities) and industrial robots (World Robotics). 
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The measurement of industrial robot adoption – ln_Robot_flow – has a 

positive and significant impact on within-firm JC and JD, and it does have a 

negative influence on the net employment of the firm (Table 1, columns [1]–[3]). 

When we use growth rate instead of level, we can predict that the application of 

robots has positive impact on JCR and JDR, and its impact on the net employment 

growth rate of the firm is consistently negative as well (Table 1, columns [4]–[6]). 

We attempted to include more firm-level characteristics that might affect JC or JD.9 

We used alternative combinations of variables and came up with robust results. The 

other control variables had mixed results in different specifications. 

Ln_capital_labour_ratio is negatively significant in the case of job creation and net 

employment, which points to the fact that the more capital-intensive a firm is, the 

more the number of workers decreases. R&D_ratio is negative in all kinds of 

specifications, which indicates that as a firm invests more in R&D, the more the 

accumulated new technology can perform routine tasks usually done by workers. 

To some extent, this supports our argument that high technology (such as robots) 

can have a substitutional effect on firms’ labour.  

The results of IV estimation are in Table 2. ln_Robot_flow has the same signs 

as the baseline estimation in all specifications, except that it loses significance in 

the case of job creation. A similar trend can be observed whether or not we use 

Robot_flow in the US or the whole North American region as the instrument. The 

Cragg-Donald Wald F statistic indicates the weak instrument test has been passed, 

which verifies the validity of the instruments.  

 

 
9 Apart from the control variables mentioned in section 4, we included total labour, total factor 

productivity, average cost, export intensity (export value divided by revenue), amongst others. Such 

practice does not change our predictions on the impact of robot application.  
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6.  Robustness Checks and Further Issues 

To verify whether industry size matters for the impact of robot application, 

we used the average number of workers at the industry level (about 470,000) to 

divide industries into large and small. We ran the IV estimation using different 

samples and included the same set of control variables in the analysis. The impacts 

of robot_flow on different labour measurement are similar to those described in the 

previous section (Table 3, columns [1]–[3]). The more robots an industry adopts, 

the more a firm in that industry tends to increase JCR and JDR, but the overall 

impact is negative, as indicated by the negative sign of net employment rate 

(although the coefficient is not significant). When we focused on industries with 

fewer workers, the impact of robot adoption on firm-level labour dynamics was not 

as substantial as in the industries with more workers. robot_flow lost significance 

in all specifications. The message is that firms in large industries were more likely 

than others to adjust their labour in response to the adoption of robots. Because 

large industries usually have more labour-intensive or routine jobs, which robots 

can easily do, robot_flow will negatively affect firms’ net employment. Industries 

with less labour are not affected much by the introduction of robots.  
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Table 3. Instrument Variable Estimation by Industry Size (in terms of 

labour) 

 (1) (2) (3) (4) (5) (6) 

Industry type Large Small 

Instrument Robot flow in the US Robot flow in the US 

Dependent 

Variable 

jcr jdr net 

employ. 

rate 

jcr jdr net 

employ. 

rate 

ln(𝑅𝑜𝑏𝑜𝑡𝐹𝑙𝑜𝑤𝑗𝑡) 0.147* 0.187** -0.0382 0.00963 0.00155 0.00189 

 (0.0791) (0.0832) (0.0496) (0.00713) (0.00703) (0.00462) 

ln(𝐾𝐿𝑖𝑗𝑡) -

0.0385*** 

0.0393*** -0.0862*** -

0.0317*** 

0.0325*** -

0.0648*** 

 (0.00541) (0.00569) (0.00340) (0.00374) (0.00369) (0.00243) 

𝑅&𝐷𝑖𝑗𝑡 -0.0239 -0.0391 0.0163 -0.0574** -0.0568** 0.000149 

 (0.0251) (0.0265) (0.0158) (0.0260) (0.0256) (0.0168) 

𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑗𝑡 -5.49e-05 7.70e-05 -6.42e-05 2.39e-06 -1.78e-05 -5.01e-06 

 (0.000271) (0.000285) (0.000170) (3.01e-05) (2.96e-05) (1.95e-05) 

𝐴𝑔𝑒𝑖𝑗𝑡 -

0.00140** 

-

0.00242*** 

0.00195*** 6.42e-06 1.88e-05 -5.97e-06 

 (0.000681) (0.000717) (0.000428) (1.69e-05) (1.66e-05) (1.09e-05) 

ln(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑗𝑡) -0.00899 -0.0581*** 0.0519*** 0.00507 -

0.0166*** 

0.0247*** 

 (0.0110) (0.0116) (0.00692) (0.00511) (0.00504) (0.00331) 

Firm fixed effects Yes Yes Yes Yes Yes Yes 

industry_year fixed 

effects 

Yes Yes Yes Yes Yes Yes 

Observations 21,183 21,183 21,183 30,922 30,922 30,922 

Number of eternal_no 4,762 4,762 4,762 5,127 5,127 5,127 

Note: Estimated coefficients are accompanied by robust standard errors in parentheses. Asterisks 

denote statistical significance: *** p<0.01, ** p<0.05, * p<0.1. 

Source: Authors, using data for firm-level employment composition (Basic Survey of Japanese 

Business Structure and Activities) and industrial robots (World Robotics). 
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To further confirm the robustness of our findings, we manually collected 

robot shipment data provided by JARA Robot Jukyu Dokou. We used four 

categories: quantity of manipulating robots, value of manipulating robots, quantity 

of industrial robots in a broad sense, and value of industrial robots in a broad sense. 

The quantity unit is 10,000 and the value unit ¥100 million. While the IFR uses the 

period 1996–2017, shipment data are only for 2001–2017. In the following analysis, 

we used the log of quantity of manipulating robots as the representative proxy for 

robot flow.10  Whether or not we used robot flow in the whole North American 

region or the US as the instrument, the IV estimation always showed a result similar 

to that obtained previously: the application of industrial robots promoted labour 

reallocation through job creation and destruction channels, and the overall effect 

was negative, which translates to the negative sign of ln_Manipulating_robot_flow 

in the case of net employment rate (Table 4). This confirms our finding that the 

impact of robot adoption on net employment variation is different from its 

individual effects on JC or JD. Further analysis is needed to make clear the 

mechanism of how robots can affect labour in different industries or different tasks.  

 

  

 
10  We also tried three other kinds of measurement and came up with similar results, which are 

available upon request.  
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Table 4. Instrument Variable Estimation using Japan Robot Association Data 

 (1) (2) (3) (4) (5) (6) 

Instrument Robot flow in the whole North 

American region 

Robot flow in the United States 

Dependent Variable jcr jdr net 

employ. 

rate 

Jcr jdr net 

employ. 

rate 

ln(𝑅𝑜𝑏𝑜𝑡𝐹𝑙𝑜𝑤𝑗𝑡) 0.0148 0.0536* -0.0322* 0.00963 0.0278** -0.0147* 

 (0.0292) (0.0291) (0.0193) (0.0116) (0.0121) (0.00751) 

ln(𝐾𝐿𝑖𝑗𝑡) -

0.0389*** 

0.0344*** -

0.0757*** 

-

0.0421*** 

0.0339*** -0.0829*** 

 (0.00269) (0.00268) (0.00178) (0.00404) (0.00420) (0.00261) 

𝑅&𝐷𝑖𝑗𝑡 -0.0286* -0.0271* 0.00954 -0.0167 -0.0355 0.0235 

 (0.0161) (0.0160) (0.0107) (0.0227) (0.0235) (0.0147) 

𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝑖𝑗𝑡 1.63e-05 1.82e-05 6.34e-06 -3.01e-05 -5.31e-05 -2.64e-05 

 (2.33e-05) (2.32e-05) (1.54e-05) (0.000202) (0.000210) (0.000130) 

𝐴𝑔𝑒𝑖𝑗𝑡 5.92e-06 3.06e-06 1.12e-05 -

0.00107** 

-

0.00162*** 

0.00114*** 

 (1.24e-05) (1.24e-05) (8.21e-06) (0.000503) (0.000523) (0.000325) 

ln(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑗𝑡) -0.00604 -

0.0426*** 

0.0371*** 0.00841 -0.0422*** 0.0515*** 

 (0.00567) (0.00565) (0.00375) (0.00589) (0.00612) (0.00381) 

Firm fixed effects Yes Yes Yes Yes Yes Yes 

industry_year fixed 

effects 

Yes Yes Yes Yes Yes Yes 

Observations 63,944 63,944 63,944 32,812 32,812 32,812 

Number of eternal_no 10,786 10,786 10,786 7,540 7,540 7,540 

Note: Estimated coefficients are accompanied by robust standard errors in parentheses. Asterisks 

denote statistical significance: *** p<0.01, ** p<0.05, * p<0.1. 

Source: Authors’ calculation using data for firm-level employment composition (Basic Survey of 

Japanese Business Structure and Activities) and industrial robots (World Robotics). 
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7.  Conclusions and Policy Recommendation 

We made use of firm-level data obtained from the BSJBSA and industry-level 

robot shipment data obtained from the IFR and JARA to investigate the causal effect 

of the industry-wide diffusion of robotics technology on within-firm labour 

reallocation. Deviating from the literature focusing on net employment changes, we 

looked at how robot adoption (flow) at the two-digit industry level affects job 

creation and destruction in individual firms. To mitigate the endogeneity issue, we 

applied robot flow data for the US and the whole North American region to conduct 

an IV analysis. We found that robot adoption positively affected job creation (rate) 

and job destruction (rate). Robot adoption’s overall impact on firms’ net 

employment was negative, consistent with studies such as Acemoglu and Restrepo 

(2020). We provide new evidence to show that the adoption of robots can affect 

firms’ labour allocation through complementary and substitutional channels 

simultaneously. Further studies are necessary to identify the specific industries and 

tasks through which such mechanism works.  

By rigorously assessing how automation of production affects labour 

dynamics within a firm, this study provides evidence suggesting the importance of 

government policy and interventions to increase user-friendly robot adoption to 

support creativity and innovation. 

In the longer term, the current study will be replicable in other countries with 

similar or different socio-techno-economic conditions surrounding robotics 

technology, as well as industrial digitalization and artificial intelligence. The 

interdisciplinary nature of the study will contribute to debates amongst social 

sciences and science technology. 
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Appendix 

 

Table A1. Annual Results: Job Creation Rate, Job Destruction Rate, Net 

Employment Change Rate, and Within-firm Job Reallocation Rate 

 Job creation rate Job destruction rate 

Net 

employment 

change rate 

Within-firm job 

reallocation rate 

(average values of all 

firms)* 

1996 21.41 21.98 −0.67 17.55 

1997 17.80 17.71 −0.03 13.92 

1998 23.92 24.57 −0.77 20.39 

1999 20.46 22.00 −2.17 16.90 

2000 13.27 14.58 −1.40 9.81 

2001 15.05 15.91 −0.94 11.25 

2002 12.57 14.35 −1.84 8.76 

2003 11.44 12.57 −1.20 7.61 

2004 12.74 12.78 −0.10 8.53 

2005 13.89 13.62 0.21 9.60 

2006 14.15 13.22 0.87 9.56 

2007 15.54 14.09 1.40 10.77 

2008 14.57 13.13 1.37 9.78 

2009 13.98 14.20 −0.27 9.73 

2010 12.78 13.74 −1.02 9.00 

2011 12.27 12.12 0.09 8.40 

2012 12.23 12.29 −0.11 8.67 

2013 12.16 12.08 0.02 8.53 

2014 11.70 11.02 0.62 7.83 

Note: Within-firm reallocation is the lower bound of job creation and job destruction for each firm. 

Source: Authors, based on the Basic Survey of Japanese Business Structure and Activities. 
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