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Abstract: Countries of the Association of Southeast Asian Nations (ASEAN) have been 

dependent on conventional energy resources because of their abundance, which 

explains the slow progress of renewable energy. The ASEAN Centre for Energy predicts 

that a 17% share of renewable energy can be achieved by 2025. Geothermal, hydro, 

and bioenergy are restricted by regional availability. With the declining cost of solar 

photovoltaic (PV) equipment, it is important to predict the future levelised cost of 

electricity (LCOE) for solar PV systems in this region. Hence, unlike earlier research 

articles, this paper focuses on evaluating the LCOE for PV technology (equal to 

1 megawatt) across selected three ASEAN Member States – Indonesia, Malaysia, and 

Thailand – until 2040, while considering the capital cost of subsystem components 

within a typical PV system – PV module, inverter, mounting structure, and balance of 

system distinctly – to generate unique learning curves for individual countries. 

Sensitivity analysis was conducted to identify the impact on LCOE values and 

attainment of grid parity.  
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1. Introduction 

 The Association of Southeast Asian Nations (ASEAN) Member States 

(AMS) are dependent on conventional energy resources because of their abundance. 

The ASEAN Centre for Energy (ACE, 2017) highlighted the existing status and 

future estimates of energy across ASEAN countries. It classified its analysis into 

three scenarios: (i) the business-as-usual (BAU) scenario assumed that past practices 

would not change significantly, (ii) the AMS target scenario assumed that all energy-

related policies and national targets across ASEAN nations would be fully attained, 

and (iii) the ASEAN progressive scenario assumed an optimistic future with regard 

to renewable energy and energy efficiency improvement. The BAU scenario is based 

on the current progress of renewable energy technology (RET), the latest national 

power development plans, national plans for the primary production of fossil fuels, 

and future expansion of refineries. Hence, it is more realistic to assume the BAU 

scenario for the rest of this article. 

1.1. Current Status of Solar PV in ASEAN 

 AMS have rich and largely untapped renewable energy sources. Myanmar, 

Indonesia, and a few other lower Mekong countries have the potential to evolve as 

global leaders in generating hydropower. Global horizontal irradiation in the region 

is one of the highest in the world, with an annual average of 1.5–2.0 megawatt-hours 

per square metre (MWh/m2) (International Renewable Energy Agency (IRENA), 

2018a). The cumulative installed capacity of solar photovoltaic (PV) systems across 

ASEAN countries, compiled from IRENA (2018b), is shown in Figure 1. Thailand, 

Malaysia, Indonesia, the Philippines, and Singapore are pioneers in PV installations 

amongst ASEAN nations. PV installation has increased substantially in recent years 

because of the introduction of the feed-in-tariff scheme in most of these countries 

and the constant decrease in the cost of solar PV.     
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Figure 1: Solar PV Cumulative Installed Capacity  

 

Lao PDR = Lao People’s Democratic Republic, MW = megawatt, PV = photovoltaic. 

Source: International Renewable Energy Agency (IRENA 2018b). 

1.2. Prospects for Solar PV in ASEAN 

According to ACE (2017), 78.6% of the total primary energy supply across 

all ASEAN countries was from conventional energy sources in 2015, with oil 

constituting around 35% of the share (Figure 2). However, projections to 2040 show 

a rapid increase in renewable energy, with a compound annual growth rate of 4%. 

Indonesia, Thailand, Malaysia, the Philippines, and Viet Nam account for more than 

90% of the energy share (Figure 3). Keeping this in mind, this research work focuses 

on Indonesia, Thailand, and Malaysia for further analysis. 

Figure 2: Total Primary Energy Supply Shares in ASEAN  

 

ASEAN = Association of Southeast Asian Nations, MTOE = million tons of oil equivalent. 

Source: ACE (2017).  
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Figure 3: Country Shares 

 

 

ASEAN = Association of Southeast Asian Nations, MTOE = million tons of oil equivalent. 

Source: ACE (2017).  

2. Literature Review 

 This study conducted a comprehensive literature review to identify previous 

research methodologies and progress attained in estimating the future levelised cost 

of electricity (LCOE) in ASEAN countries in the case of RETs, especially utility-

scale solar PV systems.  

2.1. LCOE of Renewable Energy Technology  

 Zhao and Zhang (2018) focused on estimating PV installation capacity and 

LCOE, using learning curves, during 2015–2030. They also investigated the effect of 

local government subsidies on LCOE predictions and identified 17 factors affecting 

PV installation capacity. Many LCOE projection studies have been conducted, and 

reports have been published for solar PV and other RETs for European countries. 

The Fraunhofer Institute for Solar Energy Systems (Fraunhofer ISE, 2018) forecast 

the LCOE of various RETs in Germany until 2035. Research focusing exclusively on 

solar PV has also been conducted in Europe.  

 Fraunhofer ISE (2015) forecast the solar PV capital cost and balance of 

system (BOS) separately for Germany until 2050 to project the LCOE, using learning 

curves. Ayompe et al. (2010) focused on estimating the LCOE for a 1.72 kilowatt-

peak system in Dublin (Ireland), using learning curves attained through estimating 

solar PV capital cost dynamics until 2055; they also estimated the amount of carbon 

dioxide (CO2) reduction. Breyer and Gerlach (2013) focused on comparing grid 

parity with the LCOE of solar PV in more than 150 countries, using learning curve 
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methodology to predict the future LCOE; they also considered learning curves for 

inverter and BOS cost projections. Vartiainen, Masson, and Breyer (2015a, 2015b) 

focused on the LCOE projection of solar PV until 2030 and 2050. However, 

Vartiainen, Masson, and Breyer (2015a) emphasised the weighted average cost of 

capital as the most important parameter guiding LCOE projections, using data from 

the International Energy Agency (IEA) and Bloomberg New Energy Finance in the 

model. 

 Apart from solar PV systems, some researchers have also used learning curve 

methodology to predict the LCOE for concentrated solar power (CSP) systems. 

Parrado et al. (2016); Hernández-Moro and Martínez-Duart (2013); and Breyer et al. 

(2017) focused on long-term LCOE projections for both solar PV and CSP systems, 

using learning curve methodology. However, Parrado et al. (2016) also identified the 

possible effect of a change in molten salts in thermal energy storage on LCOE in 

Chile. Köberle, Gernaat, and van Vuuren (2015) conducted similar research for 

South America, North America, and Australia, considering two scenarios – fast 

learning and slow learning – using learning curves. 

 Another widely used forecasting methodology is expert elicitation, where the 

opinions of experts on a particular topic which is uncertain and lacks sufficient data 

are represented collectively. Wiser et al. (2016) used the expert elicitation method to 

predict the LCOE of energy systems and showed that the results are congruent with 

learning curve methodology. Research with learning curve methodology is not 

limited to grid-connected energy systems. Zou et al. (2017) used learning curves to 

estimate the energy cost of grid-connected and off-grid solar PV systems in five 

Chinese cities. Talavera et al. (2016) studied 12 laws and royal decrees to assess the 

effect of government policies on the solar PV market. 

2.2. LCOE of Other Technologies 

 Projecting the LCOE through learning curve methodology is not limited to 

RETs. Some research has also been conducted considering both conventional and 

non-conventional energy technologies. Miao (2015) projected the LCOE for China 

until 2035 using learning curves for coal, gas, wind, solar PV, and nuclear power 

systems. West (2012) focused on similar methodology in the countries of the 

Organisation for Economic Co-operation and Development (OECD).  
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2.3. LCOE of RET in ASEAN 

 Few studies have focused specifically on ASEAN countries. Pratama et al. 

(2017) projected the LCOE of solar PV in Indonesia during 2011–2050, with a 5-

year interval, using learning curves. However, they considered global average cost 

data published by the IEA and IRENA rather than using national data. Global cost 

data reflect an average value which is derived from data collected from different 

countries with or without in-country equipment manufacturing facilities of solar PV 

systems. Moreover, countries vary in terms of import and consumption taxes and 

other socio-geopolitical aspects which directly or indirectly influence equipment 

costs. Thus, the utilisation of global cost data may trigger underestimation or 

overestimation of cost reductions in learning curve approximation. Finenko and 

Soundararajan (2016) considered floating solar, rooftop solar PV, and building-

integrated PV systems; and identified the LCOE until 2030 for Singapore using the 

learning curve method. A few researchers have used The Integrated 

MARKAL/EFOM System (TIMES) and Tool for Electricity Energy Planning models, 

which estimate the LCOE to articulate the long-term least-cost energy mix scenarios, 

e.g. Tanoto, Handoyo, and Sutjiadi (2015) and Zou et al. (2017) focused on the 

Philippines and Java (Indonesia), respectively.  

 The learning curve method is therefore a powerful tool for technological cost 

reduction and LCOE estimation. To the best of the authors’ knowledge, almost all 

the previous research has used the average global data of PV system costs to predict 

LCOE evolution for specific countries or regions. Few research articles have 

considered the subsystem costs of solar PV separately – solar PV modules, inverters, 

mounting structures, and BOS – to generate distinctive learning curves based on 

local (country/region-specific) data. Hence, the authors intend to develop an ASEAN 

countrywide learning curve of solar PV subsystems individually to predict the LCOE 

until 2040, with 2020 as the reference year.  

3. Measuring the Cost of Renewables 

 Renewable energy is one of the major options to mitigate greenhouse gas 

emissions and is expected to grow significantly in importance throughout the coming 

decades. Many countries have introduced support schemes for renewable electricity, 

such as feed-in tariffs or renewable portfolio standards, as mentioned in Hirth (2013). 

In such policymaking processes, it is reasonable to assume that policymakers are 
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usually informed of the costs and benefits of increasing renewable energy in the 

power system. However, a wide range of information, sometimes conflicting, is 

available on the costs and benefits of increasing renewable energy. For example, 

some analysts conclude that increasing renewables will bring overall benefits to the 

power system as a result of fuel savings and other benefits, while others conclude 

that increasing renewables will bring overall costs to the power system because of 

the higher initial investment.  

 According to the OECD and NEA (2018), the cost of electricity can be 

categorised into three different levels: plant-level costs, grid-level system costs, and 

external or social costs outside the electricity system. The plant-level cost is 

commonly referred to as the technology cost, described as the LCOE, which 

represents the lifetime costs divided by the electricity production. Grid-level system 

costs concern the costs at the level of the electricity system, linked through the 

transmission and distribution grids. The third category includes items that impact the 

well-being of individuals and communities outside the electricity sector.  

3.1. Technology Cost 

 The LCOE is a commonly used metric to represent this level of cost. One of 

the attractions of the LCOE methodology is its transparency and straightforward 

computation. As described in IEA and NEA (2015), the LCOE calculation begins 

with the equation below expressing the equality between the present value of the sum 

of discounted revenues and the present value of the sum of discounted costs, 

including payments to capital providers. The subscript t denotes the year in which the 

sale of production or the cost disbursement takes place. The summation extends from 

the start of construction preparation to the end of dismantling, which includes the 

discounted value at that time of future waste management costs. All variables are real, 

i.e. net of inflation. The discounted sum of benefits is on the left, while the 

discounted sum of costs is on the right: 

ΣPMWh ∗ MWht ∗ (1 +  r)−t  

= Σ( Capitalt + O&Mt + Fuelt + Carbont + Dt)(1 +  r)−t   

 Where PMWh is the constant lifetime remuneration to the supplier for 

electricity; MWht is the amount of electricity produced in year t in MWh; (1 + r)-t is 

the discount factor for year t (reflecting payments to capital); Capitalt refers to the 

total capital construction costs in year t; O&Mt are the operation and maintenance 
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(O&M) costs in year t; Fuelt are the fuel costs in year t; Carbont are the carbon costs 

in year t; and Dt refers to the decommissioning and waste management costs in year t. 

 Because PMWh is a constant over time, it can be brought out of the summation, 

and this equation can be transformed into: 

LCOE =  Σ[( Capitalt + O&Mt + Fuelt + Carbont

+ Dt )(1 +  r)−t /  MWht(1 +  r)t] 

 Where this constant, PMWh, is defined as the LCOE (IEA and NEA, 2015). 

 One of the weaknesses of the LCOE approach is that it does not account for 

some important aspects of power generation, particularly the timing, location, inter-

temporal aspects, and operational characteristics of the technology. Therefore, 

according to IEA (2018a) temporal availability – the intermittency of solar and wind 

resources – triggers variability and uncertainty in the power output of solar PV and 

wind projects. The integration of variable renewable energy (VRE) such as solar PV 

and wind into the electric grid causes other peak load conventional power plants 

connected to the same grid to operate on part load with less efficiency, requiring 

more fuel. In addition, speeding conventional power plants up and down to 

complement VRE output consumes time and additional fuel. Since the integration of 

VRE into the grid causes these effects, LCOE evaluation of VRE – additional 

metrics that account for the effects (e.g. the ramp effect and part load operation) 

caused by VRE on the rest of the power system – may be employed.  

3.2. System Cost   

 As IEA (2018a) notes, adding VRE will trigger two different groups of 

economic effects in the power system: 

(i) Increase in some costs. This includes the cost of VRE deployment (i.e. the 

LCOE), costs for additional grid infrastructure, and/or increased costs for 

providing balancing services. This group can be termed system costs or 

additional costs. 

(ii) Decrease in other costs. Depending on the circumstances, cost reductions 

might occur because of the reduced fuel costs for conventional generators, 

reduced CO2 and other pollutant emissions costs, a reduced need for 

additional generation capacity, a reduced need for transmission infrastructure, 
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and/or reduced transmission system losses. This group can be termed benefits 

or avoided costs. 

 VRE technologies have specific characteristics that affect their contribution 

to power system operation and investment compared with conventional generation 

technologies, as suggested in IEA (2018a). Three properties are perhaps the most 

relevant: 

(i) Variability – the available power output fluctuates with the availability of the 

primary resource (wind or sun). 

(ii) Location constraints – the resource quality differs by location and the 

primary resource cannot be transported. 

(iii) Uncertainty – the exact availability profile of the resource can only be 

predicted with high accuracy in the short term. 

 These properties affect the interaction of VRE power generation with the 

electrical system. It is possible to define three corresponding cost categories: profile 

costs, grid costs, and balancing costs (Ueckerdt et al., 2013; Hirth, Ueckerdt, and 

Edenhofer, 2015). 

(i) Profile costs. These describe the effects associated with the temporal pattern 

of VRE generation in the medium term, particularly the non-availability of 

VRE when demand is close to the available generation capacity, possible 

periods of surplus VRE generation, and a reduction in the utilisation of other 

power plants.  

(ii) Grid costs. These reflect additional costs required for connecting the system 

to existing electrical substations or transmission grids. They are associated 

with transmission constraints and losses, and incurred because of the location 

of generation in the power system.  

(iii) Balancing costs. These are associated with the short-term uncertainty of 

VRE generation, which involves deviations from generation schedules, 

e.g. the cost of balancing forecast errors of VRE, the cost of providing 

reserves, and start-up and shutdown costs to accommodate VRE.  

 Calculating these different cost categories requires defining a reference 

technology to which VRE impacts are compared and then quantifying the difference 

between the reference and the VRE case. This is highly complex and requires 

making a number of ad hoc assumptions. The resulting system costs depend directly 
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on the choice of benchmark technology. Examining system costs for VRE alone does 

not provide useful information in itself, as prescribed in IEA (2018a). 

3.3. External Costs 

 Apart from the direct costs incurred during the construction and operation of 

a power system, various indirect costs and benefits outside the system emerge and 

are usually borne by someone else. This is well established conceptually, but is very 

difficult to measure accurately in practice. These costs and benefits include (i) 

climate change impacts, (ii) air pollution, (iii) the cost of major accidents, (iv) land-

use change and natural resource depletion, (v) the security of energy and electricity 

supply, (vi) employment, and (vii) the impact of energy innovation on economic 

performance and growth. 

4. Methodology 

 The previous section dove into technology and system cost analysis 

approaches to show how the cost of renewables is calculated and how it can differ 

depending on the presentation of parameters and power systems. Even considering 

the cost within the power system, in an accounting sense, can create huge diversity in 

the cost assessment results, depending on how analysts set the assumptions and 

parameters. 

 However, this study focuses on the plant-level economic aspect of renewable 

energy – the LCOE of VRE, i.e. grid-connected solar PV systems – to simplify the 

argument. Thus, the purpose of this modelling study is first to construct the LCOE 

models for selected AMS. 

4.1. LCOE Calculation Formulae   

 LCOE calculations mainly depend on the fixed cost (capital cost) and 

variable cost (the operation, maintenance, and replacement cost) of systems and the 

electricity generated by the project over its lifetime. This section describes the 

methodology used to derive the capital cost, variable cost, and amount of electricity 

generated over the project lifetime. As described in Section 3.1, the LCOE is the 

ratio of the present value of all discounted costs incurred during the project life to the 

total electricity generation capacity (kilowatt-hours (kWh)) of the project. It is 

expressed in United States dollars ($) per kWh. The significance of the LCOE is that 

it provides a reasonable estimation of the generation cost of electricity and can be 
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used to compare technologies to identify the least-cost solution. Research works by 

Branker, Pathak, and Pearce, (2011) and IRENA (2012) have considered the LCOE 

to compare various technologies in terms of grid parity.  

 By excluding the carbon and decommissioning costs, the LCOE can be 

expressed as follows (United States Department of Energy, 2004):                                            

∑
𝐿𝐶𝑂𝐸×𝐸𝑛

(1+𝑟)𝑛
𝑛
𝑛=0 = ∑

𝐶𝑜𝑠𝑡𝑠𝑛

(1+𝑟)𝑛
𝑛
𝑛=0                                                                                                  

(1) 

Rearranging the above equation, we obtain: 

𝐿𝐶𝑂𝐸 =
∑

𝐶𝑜𝑠𝑡𝑠𝑛
(1+𝑟)𝑛

𝑛
𝑛=0

∑
𝐸𝑛

(1+𝑟)𝑛
𝑛
𝑛=0

                                                                                                                

(2) 

 Equation 2 resembles the LCOE, which is the sum of all the discounted costs 

incurred during the project life divided by the units of discounted energy produced 

from the system. While calculating, all initial costs of the project occur at n = 0 year 

and should not be discounted. Hence, the initial costs need to be separated from 

equation 2 and all other parameters in equation 2 should be discounted starting from 

year 1. The initial costs (I) can be divided into capital cost (C) and land cost (L). The 

annual costs (OPEX) comprise operation, maintenance, and replacement costs. 

Annual costs are incurred over the project lifetime and hence required discounting. 

Next, we considered the energy generated from a PV system over its lifetime. The 

energy produced from PV systems is related to the available solar resource, i.e. solar 

irradiation (S), the solar PV performance factor (PF), and solar PV annual 

degradation factor (d). Hence, the energy generated (En) annually can be illustrated 

as: 

𝐸𝑛 = S × PF × (1 − d) × 365                                                                                             

(3) 

 Notably, both the energy generated (En) and the costs must be calculated in 

kWh per watt and $ per watt, respectively, to derive the LCOE in $/kWh. Combining 

and rearranging equations 2 and 3, the LCOE can be finally derived as: 
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𝐿𝐶𝑂𝐸 = 𝐶 + {𝐿 × (1 + 𝑝)𝑥−𝑦} +
∑

𝑂𝑃𝐸𝑋×(1+𝑝)𝑛

(1+𝑟)𝑛
𝑛
𝑛=1

∑
𝑆×𝑃𝐹×(1+𝑑)𝑛×365

(1+𝑟)𝑛
𝑛
𝑛=1

                                                         

(4)                                                                            

 Where p is the inflation rate (%); x is the year of installation; y is the year of 

the data source; r is the discount rate; S is the solar irradiation (kWh/m2/day); PF is 

the performance factor of the solar PV system (%); d is the annual degradation of the 

PV module; n is the project life, i.e. 25 years; C is the capital cost; L is the land cost; 

and OPEX is the annual costs (operation, maintenance, and replacement costs).                                               

4.2. Evolution of the LCOE Using the Learning Curve Approach 

 As derived in equation 4, the LCOE calculation requires cost parameters as 

input to the formula. Hence, it is essential to derive cost data with regard to the 

capital cost (C), land cost (L), and OPEX. The LCOE estimation from 2020 to 2040 

requires future cost parameters to be fed into the LCOE model. Deriving the future 

costs associated with a solar PV system requires an estimation of the capital cost (C) 

that an investor would encounter when installing a solar PV project in the future. 

Various past research has used the learning curves approach to identify the evolution 

of cost in terms of economies of scale. Fraunhofer ISE (2015) calculated the LCOE 

of various RETs up to 2035 using learning curves. Similarly, Hernández-Moro and 

Martinez-Duart (2013) aimed at projecting the capital expenditure (CAPEX) for PV 

and CSP plants based on learning curves until 2030. Hernández-Moro and Martinez-

Duart (2013) also described the learning curve as a method that derives the cost of 

systems as a function of the cumulative installed capacity. Hence, the learning curve 

methodology has been used to predict the future CAPEX for solar PV systems. The 

learning curve is plotted as the straight line in log-log space; and the slope of these 

curves is related to the learning rate, which indicates the cost reduction per 

cumulative doubling of installed capacity and can be expressed as follows: 

𝐿𝑜𝑔[𝐶(𝑡2)] = −𝑏 × [𝐿𝑜𝑔[𝑄(𝑡2)] − 𝐿𝑜𝑔[𝑄(𝑡1)]] + 𝐿𝑜𝑔[𝐶(𝑡1 )]                                      

(5) 

or, 

𝐶(𝑡2)

𝐶(𝑡1)
= [

𝑄(𝑡2)

𝑄(𝑡1)
]−𝑏                                                                                                                   

(6) 
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 The exponent –b in equation 6 represents the slope of the straight line in log-

log space and is called the learning rate. The learning rate can be described as: 

1 − 𝐿𝑅 = 2−𝑏                                                                                                                     

(7) 

 Using equations 6 and 7, the evolution of capital cost between two time 

periods can be derived based on relevant cumulative installed capacity data. 

Combining equations 6 and 7, 

𝐶(𝑡2)

𝐶(𝑡1)
= [

𝑄(𝑡2)

𝑄(𝑡1)
]

𝐿𝑜𝑔(1−𝐿𝑅)

𝐿𝑜𝑔(2)                                                                                                          

(8) 

As articulated in Figure 4, historical data retrieved from research articles and reports 

– along with the cumulative installation capacity plans of each country – are fed into 

the learning curve model to derive distinctive learning curves. These learning curves 

are then used to derive the future cost of solar PV subsystems. 

Figure 4: Learning Curve Approach  

 

 

BOS = balance of system, LC = learning curve, M. structure = mounting structure, PV = photovoltaic. 

Source: Authors. 
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4.3. Purchasing Power Parity 

 Purchasing goods in one country may cost more or less in another country. 

Adjusting the cost with the inflation rate overlooks the effect of purchasing power 

and the consumer price index. According to Piyasil (2012), 

 

𝑃𝑃𝑃 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 X  𝑡𝑜 Y =
𝑃𝑃𝑃 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑌

𝑃𝑃𝑃 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑋
 

 Malaysian data have been used to estimate Indonesian data for the purchasing 

power parity theorem because of the unavailability of public data on utility-scale PV 

system costs in terms of subsystem costs.  

5. Estimated Parameters 

5.1. Capital Cost 

 The capital cost of equipment is a vital catalyst in influencing the outcome of 

the LCOE model. Most of the earlier studies considered the capital cost of the PV 

system as a whole (Ayompe et al., 2010; Fraunhofer ISE, 2015, 2018) while others 

considered the PV module cost and inverter cost separately (Breyer and Gerlach, 

2013). Moreover, previous research works used global average cost data. This 

research work has segregated PV system costs into four subsystems: solar PV cost, 

inverter cost, mounting structure cost, and BOS cost. This approach has provided a 

better understanding of the implications of individual subsystem costs on the LCOE 

outcome. Details of the capital costs are in  Table 1.   
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Table 1: Details of the Capital Cost 

Year Country 
Componen

t 
RM/W 

$/W in 

2018 

Source of 

Data 
Notes 

2016 

Malaysia 

Solar PV 2.56 0.60 

(SEDA, 

2017) 

• All values are adjusted to the reference year (2018) with the 

relevant average inflation rates. Different exchange rates were used 

to convert local currency to US dollars.  

• For the 2011 data, exchange rates collected from Malaysia 

(2018) were used.  

• For the 2014 and 2016 data, exchange rates from SEDA (2015, 

2017) were used.   

Inverter 0.62 0.14 

M. 

structure 
1.18 0.28 

BOS 2.29 0.54 

2014 

Solar PV 3.00 0.79 

(SEDA, 

2015) 

Inverter 0.80 0.21 

M. 

structure 
1.50 0.40 

BOS 2.60 0.69 

2011 

Solar PV 4.84 1.87 (Nippon 

Koei Co., 

Ltd. and 

ORIX 

Corporation, 

2012) 

Inverter 1.03 0.40 

M. 

structure 
2.12 0.82 

BOS 2.61 1.00 

Year Country 
Componen

t 
B/W 

$/W in 

2018 

Source of 

Data 
Notes 

2015 

Thailand 

Solar PV 22.00 0.68 

(DEDE, 

2016) 

• Data for 2015 were separated well in terms of subsystems. 

However, 2014 and 2013 data only had the overall system cost 

rather than subsystems. Hence, the subsystem cost percentages as 

derived from 2015 data were used to derive subsystem costs for 

2014 and 2013.  

• All values were adjusted to the reference year (2018) with the 

relevant average inflation rates.  

• For the 2013, 2014, and 2015 data, exchange rates were taken 

Inverter 5.00 0.16 

M. 

structure 
5.00 0.16 

BOS 15.00 0.47 

2014 

Solar PV 23.40 0.73 (DEDE and 

KMUTT, 

2015) 

Inverter 5.32 0.17 

M. 5.32 0.17 
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structure from DEDE and KMUTT (2014) and (DEDE and KMUTT, 2015). 

BOS 17.98 0.56 

2013 

Solar PV 37.45 1.22 

(DEDE and 

KMUTT, 

2014) 

Inverter 8.51 0.28 

M. 

structure 
8.51 0.28 

BOS 24.84 0.81 

Year Country 
Componen

t 
Rp/W 

$/W in 

2018 

Source of 

Data 
Notes 

2016 

Indonesi

a 

Solar PV 7,352 0.55 

(SEDA, 

2017) 
• Data related to utility-scale grid-tied solar PV projects were not 

publicly available. Most previous research is based on off-grid 

solar PV systems. Extracting data from off-grid systems would not 

be prudent since these are smaller capacity systems and the cost of 

technology reduces with economies of scale. Hence, Malaysian 

cost data were used and converted to Indonesian cost data based on 

the purchasing power parity theorem. 

• All values are adjusted to the reference year (2018) with the 

relevant average inflation rates.  

• Exchange rates from BI (2018) were used. 

Inverter 1,780 0.13 

M. 

structure 
3,389 0.25 

BOS 6,576 0.49 

2014 

Solar PV 8,213 0.74 

(SEDA, 

2015) 

Inverter 2,190 0.20 

M. 

structure 
4,107 0.37 

BOS 7,118 0.64 

2011 

Solar PV 11,964 1.21 (Nippon 

Koei Co.,Ltd. 

and ORIX 

Corporation, 

2012) 

Inverter 2,546 0.26 

M. 

structure 
5,245 0.53 

BOS 6,444 0.65 

B = baht, BOS = balance of system, M. structure = mounting structure, PV = photovoltaic, RM = ringgit, Rp = rupiah, US = United States, W = watt.   

Sources: Bank Indonesia (2018), Foreign Exchange Rates. https://www.bi.go.id/en/moneter/informasi-kurs/transaksi-bi/Default.aspx (accessed 11 November 2018); 

Bank Negara Malaysia (2018), Exchange Rates. 

http://www.bnm.gov.my/index.php?ch=statistic&pg=stats_exchangerates&s=1D6972B042AE1A64C938282A2EB181C87F7E9212 (accessed 23 November 2018); 

DEDE (2016); DEDE and KMUTT (2014); DEDE and KMUTI (2015); Nippon Koei Co., Ltd. and ORIX Corporation (2012); SEDA (2015, 2017). 
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5.2. Land Cost  

 Estimating the land cost is the most difficult part, as it varies widely for 

geographical reasons. PV plants use 10–50 square kilometres per gigawatt (United 

States Department of Energy, 2004). A land cost (L) of $30 per kilowatt (kW) has 

been considered based on previous research by Hernández-Moro and Martinez-Duart 

(2013). Country-specific inflation rates have been considered while adjusting the 

land cost to present and future costs. 

5.3. Operation and Maintenance Costs 

 Solar PV plants encounter costs for successful O&M over their lifetime. As 

prescribed by Hernández-Moro and Martinez-Duart (2013), the O&M cost for solar 

PV mainly comprises regular cleaning of PV modules, monitoring of performance, 

and inverter replacement costs; and is 1.5% of the capital cost. On the other hand, 

ACE (2016) highlighted a 1%–2% variation in the O&M cost within ASEAN 

countries. 

5.4. Solar Resource  

 The solar resource (S) stands for the average annual energy per unit area 

(kWh/m2/day) based on the location of the country where the systems will be 

installed. Solar PV systems use both direct and diffuse radiation for their electricity 

generation. Based on the solar resource data collected from the United States’ 

National Aeronautics and Space Administration (NASA, 2018), energy generated by 

fixed-structure tilted solar PV for different countries is compiled in Figure 5. The 

solar resources of the geographical location shown in Figure 5 are those of the capital 

cities of each country. However, variations in solar resources have been evaluated in 

the sensitivity analysis to replicate countrywide fluctuations in the LCOE for each 

country. This also pinpoints regions with the lowest LCOE. 
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Figure 5: Solar Resources at Tilted PV Module 

 

kWh/m2/day = kilowatt-hour per square metre per day, PV = photovoltaic. 

Source: Created by authors based on NASA (2018). 

5.5. Performance Factor 

 As prescribed in equation 3, the energy output from solar PV can be 

expressed as: 

𝐸𝑛 = S × PF × (1 − d) × 365 

 However, the real output of solar PV decreases because of various factors and 

losses. Since the electricity produced from solar PV is direct current (DC), it must be 

converted to alternating current (AC) before evacuating to the grid. An inverter is 

used, which converts DC electricity from solar PV to AC. However, the conversion 

has an efficiency rate of 93%–95% (Zahedi, 2009; Ayompe et al., 2010). In addition, 

PV module performance decreases with the increase in temperature from standard 

testing conditions (Tian et al., 2012). Thus, the performance factor of 75%–85% 

(Zahedi, 2009; Hernández-Moro and Martínez-Duart, 2013) has already been 

considered in earlier research. A performance factor of 75% has been considered in 

this study. 
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5.6. Degradation Factor 

 The performance of solar PV modules tends to degrade over years of 

operation because of exposure to ultraviolet radiation. Previous studies have 

suggested that the performance of PV modules degrades at a rate of 0.6% per year, as 

in Branker, Pathak, and Pearce (2011). However, 1.00% in the first year of 

operations and 1.21% from the second year onwards has been considered in our work, 

based on the recent research outcome published in the National Renewable Energy 

Laboratory (2018). 

5.7. Discount Rate 

In financial terms, the discount rate is one of the most important parameters guiding 

the outcomes of the LCOE model. The discount rate not only takes into account the 

inflation rate but also the technological risk. ACE (2016) considered a discount rate 

of 10%, so a similar discount rate has been considered in this study. A 

comprehensive literature review was done, and relevant data were collected for 

learning curves and LCOE modelling. Apart from this, various assumptions were 

made to complete the research work. Details of the assumptions and data used in this 

research work are in Table 2. 
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Table 2: Assumed Parameters 

Parameters 
Source Data  

(Value) 

Data Used in 

Calculation 

(Value) 

Source of Data Notes 

Solar PV annual 

performance 

degradation (%)/year 

1st year of operation 0.4% and 1.5% 1.0% 

NREL (2018)  

2nd year and onwards 
1.41%–1.45% and 

0.94%–1.03% 
1.21% 

Irradiation (kWh/m2/day 

Malaysia 4.84 4.84 

NASA (2018) 

Taken from NASA 

(2018) for tilted 

surface 
Thailand 5.30 5.30 

Indonesia 4.79 4.79 

Tilt angle with 

coordinates 

Malaysia (19°) (Lat: 4.960; Long:102.111) - - 

Thailand (14°) (Lat: 14.073; Long:100.639) - - 

Indonesia (21°) (Lat: –6.117; Long:106.79) - - 

Project lifetime 

All countries 

25 Years 25 Years Hernández-

MoroandMartinez-

Duart (2013) - 
Land cost (L) 30 $/kW 30 $/kW 

Discount rate (r) 10% 10% 
IEA (2010, 

ACE (2016) 

O&M cost (OPEX) 

Malaysia 1.5% of capital cost 1.5% of capital cost 

ACE (2016) - Thailand 1.3% of capital cost 1.3% of capital cost 

Indonesia 1.2% of capital cost 1.2% of capital cost 

Inflation rate (%) 

Malaysia 
Land cost (L) 2.6% 2.6% 

World Bank (2018) 

Inflation rates used 

for land cost and 

OPEX are different 

for different 

countries  

OPEX 3.9% 3.9% 

Thailand 
Land cost (L) 1.91% 1.91% 

OPEX 0.67% 0.67% 

Indonesia 
Land cost (L) 5.7% 5.7% 

OPEX 3.8% 3.8% 

kW = kilowatt, kWh = kilowatt-hour, Lat = latitude, Long = longitude, m2 = square metre, O&M = operation and maintenance, OPEX = annual costs, PV = photovoltaic,  

Source: Compiled by authors from ACE (2016); Hernández-Moro and Martínez-Duart (2013); IEA (2010); NASA (2018); National Renewable Energy Laboratory 

(2018); and World Bank (2018), Indicators, Agriculture and Rural Development. https://data.worldbank.org/indicator/ (accessed 23 October 2018).  
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6. Estimation Results 

6.1. Cumulative Installed Capacity 

 To generate learning curves for individual system components of solar PV, 

the cumulative installed capacity of solar PV for every 5 years of increment until 

2040 with a base case of 2020 is required. Since AMS have different targets, the 

cumulative installed capacity of solar PV varies during 2020–2040 for different 

member states. The cumulative installed capacity of Malaysia, Thailand, and 

Indonesia has been compiled and estimated with relevant information from IRENA 

(2018b), the Asia Pacific Energy Research Centre (APERC, 2016), Indonesia’s 

Ministry of Energy and Mineral Resources (MEMR, 2018), the Electricity 

Generating Authority of Thailand (2019), and the Malaysia Energy Information Hub 

(2019) in Figure 6. 

Figure 6: Comparison of the Cumulative Installed Capacity (MW) 

 

MW = megawatt, PV = photovoltaic. 

Source: Created by authors based on APERC (2016); IRENA (2018b); Electricity Generating 

Authority of Thailand (2019); Malaysia Energy Information Hub (2019); and MEMR (2018). 
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The historical installation and projections of solar PV by country are detailed in 

Figure 7, Figure 8, and Figure 9. These results are tabulated in Table 3. 

Figure 7: Cumulative Solar PV Capacity (Malaysia) 

 
MW = megawatt, PV = photovoltaic. 

Source: Created by authors based on APERC (2016) and IRENA (2018b). 

 

Figure 8: Cumulative Solar PV Capacity (Thailand) 

 
MW = megawatt, PV = photovoltaic. 

Source: Created by authors based on APERC (2016) and IRENA (2018b).  
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Figure 9: Cumulative Solar PV Capacity (Indonesia)  

 
MW = megawatt, PV = photovoltaic. 

Source: Created by authors based on APERC (2016) and IRENA (2018b).  
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Table 3: Solar PV Installation Capacities, Cumulative and by Year 

 

(a) Cumulative (MW) 

Country 
200

8 
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2020 2025 2030 2035 2040 

Indonesia 9.5 13.4 14.6 18.6 30.1 39.8 44.9 50.1 57.2 58.1 91.4 158.0 300.8 458.0 567.0 676.0 

Malaysia 8.8 11.1 12.6 13.5 31.6 
138.

1 
202.9 263.3 339.7 362.2 810.0 

1,690.

0 

2,760.

0 

3,830.

0 

4,900.

0 

5,970.

0 

Thailand 32.4 37.0 48.6 78.7 
376.

7 

823.

5 

1,298.

5 

1,419.

6 

2,446.

1 

2,697.

3 

2,710.

0 

2,730.

0 

3,940.

0 

5,150.

0 

5,750.

0 

6,340.

0 

 

(b) Per Year (MW) 

Country 
Up to 

2007 

200

8 

200

9 

201

0 

201

1 
2012 2013 2014 2015 2016 2017 2018 2020 2025 2030 2035 2040 

Indonesia 5.7 3.8 3.9 1.2 4.0 11.5 9.7 5.1 5.2 7.1 0.9 33.3 66.6 142.8 157.2 109.0 109.0 

Malaysia 7.0 1.8 2.3 1.5 0.9 18.1 106.5 64.8 60.4 76.4 22.5 447.8 
880.

0 

1,070.

0 

1,070.

0 

1,070.

0 

1,070.

0 

Thailand 32.3 0.2 4.6 11.6 30.1 
298.

0 
446.8 

475.

0 

121.

1 

1,026.

5 

251.

2 
12.7 20.0 

1,210.

0 

1,210.

0 
600.0 590.0 

MW = megawatt, PV = photovoltaic. 

Source: Created by authors based on APERC (2016); IRENA (2018b); Electricity Generating Authority of Thailand (2019); Malaysia Energy Information Hub (2019); 

and MEMR (2018). 
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6.2. Learning Rates  

 Schaeffer (2004) suggested that experience curve projections were generally 

more accurate than optimistic engineering predictions found in the literature. Alberth 

(2008) proved that having more data sets reduces the bias of the learning curve in 

terms of predicting technological cost reductions. The availability of an accurate and 

adequate data set has been an issue in ASEAN countries – only three sets of 

complete data were available for a few countries, which may have limited the 

accuracy of the learning curve estimation. Nevertheless, the learning curve can be 

used as an unbiased estimator of future technology costs, as argued by Alberth 

(2008). 

Deriving the learning rate requires developing learning curves. A typical 

utility-scale solar PV project capital cost can be divided into four main sections: solar 

PV cost, inverter cost, mounting structure cost, and BOS cost. The BOS cost 

comprises grid integration, licensing, cables, profit, and installation. Hence, deriving 

the learning rate requires developing learning curves. Therefore, four solar PV 

subsystem learning curves for three countries (Malaysia, Thailand, and Indonesia) 

were developed, totalling 12 learning curves. Learning rates derived from these 

curves were used to estimate the future evolution of capital costs, as described in 

Figure 4. The learning rates for different components and the above-mentioned three 

countries are noted in the following sections. The learning curves generated for 

Malaysia and Thailand were completed based on previous data collected from 

various sources: Nippon Koei Co., Ltd. and ORIX Corporation, 2012; Thailand’s 

Department of Alternative Energy Development and Efficiency (DEDE) and King 

Mongkut’s University of Technology Thonburi (KMUTT), 2014; DEDE and 

KMUTT, 2015; Sustainable Energy Development Authority (SEDA), 2015; DEDE, 

2016; and SEDA, 2017. All subsystem costs – along with cumulative solar PV 

installation capacity for grid-tied solar PV systems of utility scale in Malaysia, 

Thailand, and Indonesia – are plotted in log-log scale (Figures 10, 11, and 12). 

Because of the absence of publicly available reliable and relevant utility-scale PV 

module costs, inverter costs, mounting structure costs, and BOS costs for Indonesia, 

Malaysian data were considered with appropriate adjustments and conversions based 

on the purchasing power parity theorem described in Section 0. 



 

26 

Malaysia 

 With a cumulative installed PV system capacity of only 362 megawatts 

(MW) until 2017 (Figure 7), the progress ratio of solar PV modules in Malaysia 

derived from the learning rate (Figure 10) is 77% – showing that the cost has been 

reduced by 23% (learning rate) in contrast to the global average of 21% (Zhao and 

Zhang, 2018). In the literature, comparisons between different learning curves are 

described by doubling the cumulative installations. In addition, the corresponding 

change in cost is referred to as the progress ratio. It is also referred to as the ratio of 

the final to the initial cost because of the doubling of the cumulative installation. 

Based on equation 6, the progress ratio can be defined as (1-learning rate) 

(Hernández-Moro and Martinez-Duart, 2013), which means that if the cumulative 

solar PV installation doubles, the price based on the learning curve theory should be 

reduced to 77% of the present value. 

Figure 10: Learning Curves for Malaysia – Cumulative Capacity, 2018 

(MW) 
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BOS = balance of system, kW = kilowatt, M. structure = mounting structure, MW = megawatt, 

PV = photovoltaic. 

Source: Authors. 

Table 4: Progress Ratio and Learning Rates for Malaysia 

Country Subsystem Slope value (-b) Progress ratio  
Learning 

rate  

Malaysia 

Solar PV 0.38 0.77 0.23 

Inverter 0.29 0.82 0.18 

M. structure 0.13 0.92 0.08 

BOS 0.18 0.88 0.12 

BOS = balance of system, M. structure = mounting structure, PV = photovoltaic. 

Source: Authors. 

 Despite having a low cumulative installation capacity, notable cost reductions 

in Malaysia may be attributed to its evolution as one of the major PV system 

manufacturing countries in recent years. With regard to progress in inverter cost 

reductions, comparatively slow progress is observed – a progress ratio of 82% (18% 

cost reduction) – since the inverters used in Malaysia are mostly imported and 

inverter prices reduce with increased volume. Since Malaysia’s cumulative 

installation is lower than that of other pioneers such as Thailand, a slow progress 

ratio has been observed. The BOS and mounting structures are mostly procured, 

developed, and constructed locally. The costs of installation, grid integration, 

licenses, infrastructure, cables, and wire are included in the BOS. The grid 

integration cost varies with the distance between the project site and the nearest 

transmission substation, along with the capacity of the project. As estimated, the 

BOS and mounting structure costs have progress ratios of 88% and 92%, respectively. 

Cost reductions in the BOS and mounting structure are dependent on the availability 
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of cheap, skilled human resources, and cumulative installed capacity. The lower 

progress ratio of the BOS and mounting structure may be because Malaysia has less 

PV system installed in terms of capacity and high labour costs. 

 The cost of the PV module is also expected to decrease in the coming years 

based on the learning curve. This may be because of the following factors, based on 

IEA (2018b): 

(i) The consumption of polysilicon had a decreasing trend of 35% from 2008. 

(ii) Additional investment in new production facilities will trigger production 

cost reductions. 

(iii) The diamond wire saw process to produce wafer has been used, which 

reduces the processing time and improves efficiency. 

(iv) A 12% reduction in energy consumption has been reported since 2009 in 

polysilicon production. 

Thailand 

As seen from the learning curves of the PV system installed in Thailand 

(Figure 11), a progress ratio of 68% (Table 5) is achieved – meaning that the solar 

PV module cost has reduced by 32% (learning rate) as the capacity installation 

doubled in the reference period. A higher learning rate than the global average of 

20.9% (Fraunhofer ISE, 2018) may be because PV installations in Thailand are 

amongst the highest in ASEAN countries. Of the subsystem costs, the cost of 

inverters has dropped to 48%, followed by the cost of the BOS and the cost of solar 

PV modules. Although Thailand is considered one of the pioneers in implementing 

solar PV projects in ASEAN, its solar PV module cost reductions are not the highest, 

perhaps because of the absence of local manufacturers.   
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Figure 11: Learning Curves for Thailand – Cumulative Capacity, 2018 

(MW) 

  

  

BOS = balance of system, kW = kilowatt, M. structure = mounting structure, MW = megawatt, 

PV = photovoltaic. 

Source: Authors.  

Table 5: Progress Ratio and Learning Rates for Thailand 

Country Subsystem Slope value (-b) Progress ratio  Learning rate  

Thailand 

Solar PV 0.56 0.68 0.32 

Inverter 1.06 0.48 0.52 

M. structure 1.06 0.48 0.52 

BOS 0.92 0.53 0.47 

BOS = balance of system, M. structure = mounting structure, PV = photovoltaic. 

Source: Authors. 

 

 

 

y = 68595x-0.562

R² = 0.9105

1

10

100

1,000

10,000

100 1,000 10,000

$
/k

W

Solar PV Cost

y = 318032x-1.055

R² = 0.998

1

10

100

1,000

100 1,000

$
/k

W

Inverter Cost

y = 318032x-1.055

R² = 0.998

1

10

100

1,000

100 1,000

$
/k

W

M. Structure Cost

y = 379367x-0.92

R² = 0.9654

100

1,000

100 1,000 10,000

$
/k

W
BOS Cost



 

30 

Indonesia 

 Figure 12 refers to reductions in the subsystem cost of utility-scale solar PV 

grid-tied projects in Indonesia. As shown in Table 6, cost reductions in Indonesia 

have been much higher than the annual capacity installation. This may be because 

solar PV installation has been increasing since 2014 in Indonesia, which is one of the 

newest of the AMS to adopt solar PV. Congruently, the overall solar PV system cost 

has been decreasing drastically since 2010 (IRENA, 2018c).  

Figure 12: Learning Curves for Indonesia – Cumulative Capacity, 2018 

(MW) 

  

  

BOS = balance of system, kW = kilowatt, M. structure = mounting structure, MW = megawatt, 

PV = photovoltaic. 

Source: Authors. 
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Table 6: Progress Ratio and Learning Rates for Indonesia 

Country Subsystem Slope value (-b) Progress ratio  
Learning 

rate  

Indonesia 

Solar PV 0.59 0.66 0.34 

Inverter 0.52 0.70 0.30 

M. structure 0.13 0.92 0.08 

BOS 0.19 0.88 0.12 

BOS = balance of system, M. structure = mounting structure, PV = photovoltaic. 

Source: Authors.  

7. Levelised Cost of Electricity  

7.1. Simple LCOE 

 The simple solar PV LCOEs, i.e. without the carbon and decommissioning 

costs, were calculated based on the findings detailed in Section 6.2. As shown in 

Figure 13, simple LCOEs for all three countries reduce from the reference period 

until 2040. In 2020, Thailand will have the highest LCOE while solar PV systems in 

Malaysia and Indonesia will generate electricity at lower LCOEs compared with 

Thailand. In 2040, Malaysia’s LCOE is predicted to be the highest, while Thailand’s 

cost of electricity generation will be the lowest at $0.074/kWh. Malaysia’s LCOE 

remains the highest of the three countries because of the higher capital cost, as 

derived from data sets. OPEX is also highest in Malaysia (Table 2). CAPEX is 

projected to be lowest in Indonesia, followed by Thailand and Malaysia. However, 

the LCOE evolves to be lowest in Thailand, followed by Indonesia and Malaysia in 

2040. This opposite evolution may be because Thailand has the highest solar 

irradiation resource and the lowest labour costs among the selected AMS countries.  
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Figure 13: CAPEX and LCOE Evolution 

  

CAPEX = capital expenditure, kWh = kilowatt-hour, LCOE = levelised cost of electricity, W = watt. 

Source: Authors. 

 The impact of various subsystem costs on LCOE can be observed in Figure 

14, 15, and 16. As noted, the cost of the solar PV module contributes the most 

(43%~48%) to the LCOE in Thailand, followed by BOS costs. On the other hand, 

BOS costs account for more than 30% of the LCOE in Malaysia and Indonesia, 

followed by the solar PV module costs. Hence, it can be concluded that the LCOE 

can be drastically reduced if special consideration is provided to the selection of 

project sites. Projects installed adjacent to existing substations will have a reduced 

BOS cost and subsequently lower LCOE. The use of locally manufactured PV 

modules also reduces the LCOE, as seen in the case of Malaysia. Lastly, it can also 

be comprehended that the absolute monetary value of the individual cost components 

shrinks over the years, regardless of its increase/decrease in percentage share within 

LCOE estimates. 
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Figure 14: Share of Costs in Simple LCOE (Malaysia) 

 

BOS = balance of system, kWh = kilowatt-hour, LCOE = levelised cost of electricity, M. structure = 
mounting structure, O&M = operation and maintenance, PV = photovoltaic. 
Source: Authors. 

Figure 15: Share of Costs in Simple LCOE (Thailand) 

 

BOS = balance of system, kWh = kilowatt-hour, LCOE = levelised cost of electricity, M. structure = 
mounting structure, O&M = operation and maintenance, PV = photovoltaic. 
Source: Authors. 
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Figure 16: Shares of Costs in Simple LCOE (Indonesia) 

 

BOS = balance of system, kWh = kilowatt-hour, LCOE = levelised cost of electricity, M. structure = 

mounting structure, O&M = operation and maintenance, PV = photovoltaic. 

Source: Authors.  

 The calculated CAPEX and LCOEs of solar PV showed significant 

differences between the three countries. This variance can be attributed to the 

following factors. 

 According to IEA (2018b), Malaysia was the third largest manufacturer of 

PV modules in 2017 – accounting for 6% of global production. In-country demand 

for PV modules is met by its own production sources, so the cost is lower.  
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250 megawatt-peak (MWp) (Hamdi, 2019). According to the Asian Development 

Bank (ADB, 2015), these companies assemble PV modules using predominately 
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module manufacturers also form the main contingent of PV system installation 

contractors, and such installation works have to date been a strong driver for their PV 

manufacturing activity. This affects the financial planning of engineering, 
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The Indonesian PV market has relied primarily on imported PV modules or locally 

assembled PV modules made from imported module components. The growth of 

solar PV, with regard to its potentiality, is sluggish and can be adequately supplied 

by domestic manufacturers. These factors have resulted in a CAPEX comparable 

with that of Malaysia. 

 According to Tongsopit et al. (2015), Thailand only has three module 

manufacturers. Hence, undersupply from local manufacturers persists in triggering 

the import of PV modules. According to DEDE (2016), Thailand imports most of its 

PV modules from China, Germany, Japan, and Taiwan. According to DEDE (2013), 

45% of imported PV modules were from Taiwan while 27% were from Japan. 

Various studies have noted the higher prices of PV modules from Japan, Germany, 

and Taiwan compared with those from China. This may be the reason behind the 

higher solar PV cost in Thailand compared with the other countries. 

7.2. Countrywide Weighted Average LCOE   

 With the aim of aiding policymakers, the weighted average LCOEs 

(WALCOEs) were also estimated (Table 7). Since the performance of PV modules 

degrades, it is expected that PV systems installed in 2020 will gradually produce less 

electricity and additional PV systems will be required to mitigate the loss in 

electricity generation in the previous years. The reduction in output also affects the 

attainable LCOE of solar PV in a particular year. A reduction in generation from 

previously installed systems triggers the additional installation of PV systems with 

lower LCOEs in forthcoming years.  
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Table 7: Breakdown of the WALCOE 

Malaysia 

2020 2025 2030 2035 2040 

$/kWh 
Share 

(%) 
$/kWh 

Share 

(%) 
$/kWh 

Share 

(%) 
$/kWh Share (%) $/kWh 

Share 

(%) 

O&M cost 0.016 13.4 0.015 13.4 0.014 13.4 0.014 13.4 0.013 13.4 

PV cost 0.031 26.1 0.028 24.8 0.025 23.8 0.023 23.0 0.022 22.3 

Inverter cost 0.009 7.5 0.008 7.4 0.008 7.2 0.007 7.1 0.007 7.0 

M. structure 0.022 17.9 0.021 18.5 0.020 18.9 0.020 19.2 0.019 19.4 

Land cost 0.003 2.7 0.003 3.1 0.004 3.6 0.004 4.0 0.004 4.6 

BOS 0.039 32.3 0.037 32.8 0.035 33.0 0.034 33.2 0.033 33.3 

Thailand $/kWh 
Share 

(%) 
$/kWh 

Share 

(%) 
$/kWh 

Share 

(%) 
$/kWh Share (%) $/kWh 

Share 

(%) 

O&M cost 0.015 11.1 0.011 11.1 0.010 11.1 0.010 11.1 0.010 11.1 

PV cost 0.058 43.1 0.047 45.8 0.044 46.7 0.042 47.0 0.041 47.3 

Inverter cost 0.012 8.7 0.008 7.7 0.007 7.4 0.006 7.2 0.006 7.1 

M. structure 0.012 8.7 0.008 7.7 0.007 7.4 0.006 7.2 0.006 7.1 

Land cost 0.003 2.1 0.003 3.0 0.003 3.5 0.003 3.8 0.004 4.2 

BOS 0.035 26.3 0.025 24.6 0.022 23.9 0.021 23.6 0.020 23.3 

Indonesia $/kWh 
Share 

(%) 
$/kWh 

Share 

(%) 
$/kWh 

Share 

(%) 
$/kWh Share (%) $/kWh 

Share 

(%) 

O&M cost 0.016 13.3 0.014 13.3 0.013 13.3 0.012 13.3 0.012 13.3 

PV cost 0.032 26.4 0.024 23.0 0.020 20.9 0.018 19.8 0.017 18.7 

Inverter cost 0.008 6.8 0.006 6.1 0.005 5.7 0.005 5.4 0.005 5.2 

M. structure 0.021 17.7 0.020 19.2 0.019 20.1 0.019 20.4 0.018 20.7 

Land cost 0.004 3.0 0.004 3.9 0.005 4.8 0.005 5.5 0.006 6.4 

BOS 0.039 32.7 0.036 34.4 0.034 35.2 0.033 35.5 0.032 35.6 

BOS = balance of system, kWh = kilowatt-hour, M. structure = mounting structure, O&M = operation and maintenance, PV = photovoltaic, WALCOE = weighted 

average levelised cost of electricity. 

Source: Authors. 
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 As shown in Figure 17, the WALCOE is higher than the simple LCOE in all 

countries throughout the evaluation period. This is mainly due to the yearly gradual 

reduction in PV output, which is compensated by additional solar PV installation in 

the proceeding years.   

Figure 17: Comparison of WALCOE and LCOE 

 

BOS = balance of system, kWh = kilowatt-hour, LCOE = levelised cost of electricity, WALCOE = 

weighted average levelised cost of electricity. 

Source: Authors. 

7.3. Sensitivity Analysis 

 Amongst the selected countries, Thailand retains the best geographical 

location in terms of solar irradiation (5.3 kWh/m2/day) at a tilt angle of 14°. Solar 

irradiation plays a vital role in dictating the LCOE calculation. Hence, a sensitivity 

analysis was conducted, keeping solar irradiation constant at a maximum of 5.3 

kWh/m2/day for all three countries. As seen from Figure 18, the LCOE of Malaysia 

and Indonesia decreases as electricity generation increases because of increased solar 

irradiation. This leads to the LCOE of Indonesia evolving as the lowest in 2040. 
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Figure 18: LCOE Evolution at 5.3 kWh/m2/day 

 

kWh = kilowatt-hour, LCOE = levelised cost of electricity, m2 = square metre. 

Source: Authors. 

Furthermore, except Thailand, the other countries (i.e. Indonesia and 

Malaysia) are geographically dispersed – requiring regional sensitivity analysis in 

terms of variations in solar irradiation. Hence, sensitivity analysis was concluded for 

each of these countries by varying irradiation while keeping other factors constant. 

As seen from Figure 21, a wide range exists in the LCOE estimates, with a 

decreasing trend in the long term (i.e. 2020–2040) within each selected AMS.  

Figure 19: Regional LCOE Range (Malaysia) 
 

kWh = kilowatt-hour, LCOE = levelised cost of electricity. 

Source: Author. 
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Figure 20: Regional LCOE Range (Thailand) 

 

kWh = kilowatt-hour, LCOE = levelised cost of electricity. 

Source: Authors. 

Figure 21: Regional LCOE Range (Indonesia)  

 

kWh = kilowatt-hour, LCOE = levelised cost of electricity. 

Source: Authors 

8. Policy Implications 

 With the existing government plans, ASEAN countries may only succeed in 

attaining 17% of the energy share through renewable sources by 2025. However, 

with the declining solar PV cost, it is important to predict the future attainment of 

grid parity across ASEAN. Future projections (Section 7) infer that Malaysia will 

have the highest LCOE at $0.10/kWh in 2020, while Indonesia will have the lowest 

LCOE at $0.08/kWh in 2040.  

 The authors also projected simple future LCOEs for conventional energy 

based on data gathered from Dong and Baruya (2015), MEMR (2018), and 
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fossil fuels (coal and natural gas). Improvements in generation technologies for 

conventional power sources were not considered. 

 The LCOEs of solar PV and conventional electricity at the generation level 

are compared in Figures 22-24. 

Figure 22: Forecast Grid Parity of Solar PV in Malaysia 

 

kW = kilowatt, LCOE = levelised cost of electricity, PV = photovoltaic, WALCOE = weighted 

average levelised cost of electricity. 

Source: Authors. 

Figure 23: Forecast Grid Parity of Solar PV in Indonesia 

 

kW = kilowatt, LCOE = levelised cost of electricity, PV = photovoltaic, WALCOE = weighted 

average levelised cost of electricity. 

Source: Authors. 
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Figure 24: Forecast Grid Parity of Solar PV in Thailand 

 

kW = kilowatt, LCOE = levelised cost of electricity, PV = photovoltaic, WALCOE = weighted 

average levelised cost of electricity. 

Source: Authors. 

 The results predict that utility PV systems will attain grid parity in Indonesia, 

Malaysia, and Thailand in 2021, 2026, and 2023, respectively.   

9. Conclusion 

 This research study estimates the LCOE of grid-connected PV systems across 

selected ASEAN countries. The accuracy of learning curve methodology increases 

with more data sets. However, because of the scarcity of publicly available data, this 

work has been conducted based on a few data points, which may lead to inaccuracies 

in the estimation. The LCOE estimation of solar PV systems provided in ACE (2016) 

may be compared with the outcome of this research work for validation. ACE (2016) 

calculated the LCOE of PV systems in Indonesia and Malaysia as $0.145/kWh and 

$0.150/kWh, respectively. However, these results are based on 2014 data sets. Our 

research identified LCOEs of $0.112/kWh and $0.113/kWh for Indonesia and 

Malaysia, respectively, for 2020. The variation may be because the capital cost has 

decreased from 2014 to 2019 and will tend to decrease further in 2020 – resulting in 

a plummeting LCOE in 2020 and beyond. It is also notable that the LCOE in 

Malaysia and Indonesia, as mentioned in ACE (2016), is comparable to the current 

research outcome.   
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 The costs of the PV module and BOS mostly affect the generation cost of 

solar PV systems. Hence, effective measures to develop in-house equipment supply 

chains, especially for PV modules, are needed to accelerate future LCOE reductions. 

BOS costs comprised a share of more than 35% in generating one unit of electricity 

in Indonesia. Geographical dispersion of localities and grid integration points may 

cause such high BOS costs. Besides, Indonesia is rich in natural resources and relies 

vastly on these for its energy supply, causing the RET market to flourish slowly 

compared with its ASEAN counterparts. Hence, a shortage of skilled labour as well 

as knowledge gaps may have influenced increased BOS costs. The outcome of this 

research predicts that utility PV systems will attain grid parity in Indonesia, Thailand, 

and Malaysia in 2021, 2023, and 2026, respectively. However, it should be noted that 

the estimation conducted in this research is based on PV systems with a capacity 

equivalent to 1 MW.   

 This study did not consider the potential instability of electrical grids caused 

by the introduction of large-scale solar PV. As mentioned earlier, grid transmission 

of electricity generated from PV systems requires additional infrastructure, such as 

electrical energy storage or batteries, which affect LCOE outcomes. This point will 

be further analysed quantitatively in our future studies. 

 A multidimensional ecology must be developed to accelerate further cost 

reductions. In terms of policy, the cost of health hazards, CO2, and subsidies must be 

added to conventional power plants during decision making or when providing 

carbon credits to solar PV systems as cash incentives from conventional power 

producers. Since solar PV systems are capital-intensive, implementers often use 

external financial support. The availability of green financing schemes with low 

interest rates will further reduce LCOEs. The import of PV modules is duty-free in 

Indonesia, while local assemblers must pay duty on accessories for assembling PV 

modules locally. To nurture and develop in-house capacity and technology, 

governments should focus on the exemption of duty on imported accessories and 

hardware. The implementation of larger capacity systems will trigger the attainment 

of grid parity earlier in these countries. As mentioned in Indonesia's National Energy 

Council (2017), the unit cost of larger capacity power plants is lower than that of 

smaller capacity power plants because of economies of scale. The proportionality 



 

43 

factor in the economies of scale has been historically considered as 0.6 (National 

Energy Council, 2017). Hence, it is proposed that individual power producers opt for 

larger capacity systems to lower LCOEs. Attaining grid parity can also be 

accelerated by installing systems in regions with high solar irradiation, which will 

generate more energy with lower LCOEs (Figures 19, 20, and 21) and realise 

acceleration in grid parity. 
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