ERIA Discussion Paper Series

No. 425

East Asian Production Networks Go Beyond the Gravity Prediction

Mitsuyo ANDO

Keio University

Fukunari KIMURA

Keio University and Economic Research Institute for ASEAN and East Asia (ERIA) Kenta YAMANOUCHI Kagawa University

March 2022

Abstract: This paper provides empirical evidence that supports the continuing importance of machinery international production networks (IPNs) in East Asia. We first confirm their robustness and resilience, even during the coronavirus disease (COVID-19) pandemic, as well as the significance of East Asian countries as suppliers of machinery final products and parts and components for the world. Then, we demonstrate how deeply East Asian countries are committed to machinery IPNs by applying a gravity equation to pre-pandemic bilateral machinery trade and comparing actual values with fitted values of the estimated equation. The gravity estimation exercise indicates that machinery trade is basically regional – within Factory Asia, Factory America, and Factory Europe – but Factory Asia also has strong inter-regional linkages. It also verifies that the Association of Southeast Asian Nations (ASEAN) has played an important role in Factory Asia, going far beyond the gravity prediction, for the development of machinery IPNs.

Keywords: international production networks, East Asia, gravity equation

JEL Code: F14, F23

1. Introduction

The coronavirus disease (COVID-19) turmoil is not yet over at the timing of writing. However, it has become obvious that global value chains (GVCs) – notably machinery international production networks (IPNs) in East Asia – have survived. East Asia, including Northeast and Southeast Asia, must reconfirm the role of IPNs to strengthen the region's international competitiveness and should maintain a favourable policy environment for IPNs.

East Asia has led the world in aggressively using the mechanics of IPNs (Ando and Kimura, 2005) or the second unbundling (Baldwin, 2016) through the task-by-task international division of labour. The machinery sectors consist of multi-layered production processes with different technologies and diversified materials, involving many players, domestically and internationally. Thus, the machinery sectors have become central players in IPNs and have developed long and sophisticated supply chains. Massive machinery IPNs have so far been formed only in three regions: East Asia, North America, and Europe. Factory Asia comprises countries at more widely different stages of development and extends tighter trade and investment links with other parts of world than Factory North America or Factory Europe. Since the mid-2000s, Factory Asia has established its dominance – especially in electric machinery – and has supplied a massive number of parts and components as well as final products to other regions (Ando and Kimura, 2013).

While pessimism over globalisation has grown in the world, particularly in developed countries, since the global financial crisis (GFC), East Asian IPNs have maintained their strong performance. After an incomplete recovery from the 'trade collapse' due to the GFC, there was a period of 'slow trade' during 2011–2016 in which the growth rate of world trade was lower than that of world gross domestic product (GDP). Even during this period, however, network trade in East Asia grew steadily (Obashi and Kimura, 2018). After Donald Trump became President of the United States (US) in 2017, the US–China confrontation and geopolitical

tensions weakened the confidence in the rules-based trading regime, and from the beginning of 2020, the whole world experienced the turmoil of the COVID-19 pandemic. The 16 May 2020 issue of *The Economist* was entitled 'Goodbye Globalisation', and substantial backward moves against GVCs were predicted. However, again, IPNs in East Asia showed their robust and resilient nature and even functioned as a built-in stabiliser for economies with deep wounds due to COVID-19 (Ando, Kimura, and Obashi, 2021; Ando and Hayakawa, 2021). Although inward-looking sentiments seem to be becoming stronger in other parts of the world, particularly in the European Union (EU), the momentum of globalisation is still alive in East Asia, and development strategies with widening and deepening IPNs continue to be relevant.

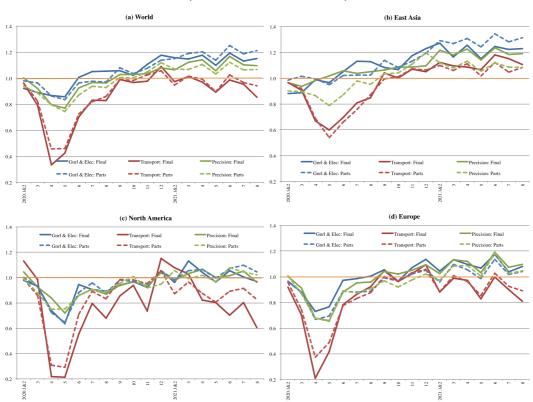
The essential elements of the success of East Asia in the formation of IPNs have been a long-lasting peace and a stable rules-based trading regime. The value of a free and predictable trading regime should not be underestimated. With the weakening role of the World Trade Organization (WTO) as a rule keeper, mega free trade agreements (FTAs) – including the Regional Comprehensive Economic Partnership (RCEP) agreement – must be used to reduce policy risks and defend the rules-based trading regime (Kimura, 2021). Trade in goods, particularly in IPN operations, is still crucial for East Asia.

In this paper, we attempt to convince researchers and policymakers of the continuing importance of machinery IPNs in East Asia. The next section presents the decline and recovery of machinery exports amid the COVID-19 pandemic in three regions – East Asia, North America, and Europe – to confirm the robustness and resilience of East Asian IPNs. The rest of the paper is devoted to the gravity equation exercise to show how deeply East Asian countries, particularly the Association of Southeast Asian Nations (ASEAN) Member States (AMS), are committed to machinery IPNs by comparing actual machinery trade with predicted machinery trade after controlling for country size and geography. The last section concludes the paper.

2. Robustness and Resilience of East Asian Machinery IPNs and COVID-19

One of the typical concerns about IPNs, due to their extensiveness, is that a shock could be propagated through the supply chains. Hayakawa and Mukunoki (2021), for instance, demonstrated a negative contagion during COVID-19 from countries supplying machinery parts and components to countries exporting final machinery products. On the other hand, as experienced in past shocks, we observe the robust and resilient nature of machinery IPNs, particularly those in East Asia even with COVID-19.¹

Figure 1 shows the monthly machinery exports to the world in 2020 and 2021 until August (indexed as each month of 2019 = 1), with a distinction between machinery parts and components and machinery final products (Ando and Hayakawa, 2021).² Machinery sectors (Harmonized System (HS) 84-92) include general machinery, electric machinery, transport equipment, and precision machinery. As Figure 1 (a) clearly shows, worldwide machinery exports achieved a rapid V-shaped recovery in 2020, suggesting the resilient nature of machinery IPNs in general. One of the reasons is that the transactions of parts and components within machinery IPNs are unlikely to be disconnected because firms try to optimise their supply chains, considering both cost reduction and risk management, with substantial set-up costs for reliable links (Ando, Kimura, and Obashi, 2021).³ In addition, the import origin diversity of inputs mitigated the harmful supply-side effects of COVID-19, particularly in February–March 2020,


¹ See Obashi (2010), Ando and Kimura (2012), and Okubo, Kimura, and Teshima (2014) for the robustness and resilience of machinery IPNs in East Asia during past crises such as the 1997 Asian financial crisis, the 2008–2009 GFC, and the 2011 Great East Japan Earthquake. Miroudot (2020) explained the terms 'robustness' (less likely to be interrupted) and 'resilience' (more likely to be resumed even if being interrupted).

² See Kimura and Obashi (2010) for the definition of machinery parts and components for different versions of the Harmonized System (HS) classification. Machinery final products are regarded as machinery goods other than machinery parts and components.

³ Their analysis of Japan's machinery trade decomposed the fall in trade into two intensive margins (quantity effect and price effect) and two extensive margins (entry effect and exit effect) and showed a small exit effect for parts and components.

as it allowed the flexible adjustment of transactions (Ando and Hayakawa, 2022). Moreover, an increased preference towards the use of e-commerce, reflecting the nature of COVID-19, partially mitigated the negative impacts on trade (Hayakawa, Mukunoki, and Urata, 2021). Furthermore, positive demand shocks due to COVID-19-specific demand for certain products related to teleworking, stay-at-home activities, and preventing infection partially offset negative supply and demand shocks (Ando, Kimura, and Obashi, 2021).

Figure 1: Comparison of Major Machinery International Production Networks Amid COVID-19: Machinery Exports to the World

(each month of 2019 = 1)

ASEAN = Association of Southeast Asian Nations, COVID-19 = coronavirus disease. Notes: (a) World includes 40 exporting countries; (b) East Asia includes six ASEAN Member States, China, Hong Kong, Taiwan, the Republic of Korea, and Japan; (c) North America includes East Asia, the United States, Mexico, and Canada; and (d) Europe includes 14 European Union countries, the United Kingdom, and Switzerland. 'Gnrl & Elec', 'Transport', and 'Precision' refer to general and electric machinery, transport equipment, and precision machinery, respectively. 'Final' and 'Parts' indicate final products and parts and components, respectively. Source: Ando and Hayakawa (2021).

Importantly, the negative impacts were much smaller for machinery IPNs in East Asia (Figure 1 (b)) than those in North America (Figure 1 (c)) and Europe (Figure 1 (d)). In addition, exports of general and electric machinery goods, as well as precision machinery final products, returned to their pre-pandemic levels in April 2020. Together with the activated e-commerce transactions, the positive demand shock products of these sectors contributed to such a rapid recovery by partially compensating for the effects of the negative supply and demand shocks.⁴ East Asian countries are important suppliers of machinery final products as well as parts and components in the world; for instance, five (eight) out of the top 10 (20) export countries for general and electric machinery final products, six (10) for general and electric machinery parts and components, and six (10) for precision machinery parts and components are in East Asia in the pre-pandemic year (Table 1). This suggests how significant machinery sectors are for East Asian economies.

⁴ Ando, Kimura, and Obashi (2021) presented examples of positive demand shock products that contribute significantly to trade increases (or partially mitigating trade decreases) in the case of Japan's machinery trade. Such products include laptop computers.

Table 1: Top 20 Export Countries and Their Shares in Global Machinery

Exports, 2019

1	n.	/	1	
	~/	n		
•	1	~	1	

_			Final produ	cts					Parts and comp	onents		
	Gnrl & Ele	ec	Transpor	t	Precision		Gnrl & Ele	ec	Transpor	t	Precision	ı
1	China	33.4	Germany	15.7	US	16.5	China	19.1	Germany	14.8	China	21.7
2	Germany	8.7	US	9.7	Germany	12.5	US	9.1	US	11.3	Japan	10.1
3	US	6.4	Japan	9.6	China	8.6	Germany	9.0	China	8.4	US	10.0
4	Mexico	4.5	Mexico	7.0	Switzerland	7.1	Rep. of Korea	6.7	Japan	7.5	Germany	8.8
5	Japan	3.8	France	6.3	Netherlands	6.9	Japan	6.3	Mexico	6.2	Rep. of Korea	7.5
6	Netherlands	3.2	Rep. of Korea	4.6	Japan	6.9	Taiwan	6.2	France	4.8	Taiwan	7.4
7	Viet Nam	3.2	China	4.5	Mexico	4.3	Singapore	3.6	UK	4.0	UK	3.3
8	Italy	3.1	Canada	4.2	Singapore	3.5	Malaysia	3.5	Rep. of Korea	3.8	France	2.4
9	Rep. of Korea	2.5	Spain	3.6	France	3.1	Mexico	3.0	Italy	3.7	Singapore	2.3
10	Taiwan	2.1	UK	3.6	UK	2.9	France	2.9	Czechia	3.2	Thailand	2.2
11	Thailand	2.0	Belgium	3.1	Ireland	2.8	Italy	2.7	Poland	3.2	Netherlands	2.1
12	Czech Rep.	2.0	Italy	2.4	Italy	2.2	UK	2.5	Canada	3.0	Malaysia	1.9
13	Malaysia	1.7	Netherlands	1.8	Belgium	2.0	Viet Nam	2.1	Spain	2.7	Mexico	1.8
14	UK	1.7	Czech Rep.	1.8	Rep. of Korea	2.0	Netherlands	2.0	Belgium	1.5	Italy	1.8
15	France	1.6	Slovakia	1.8	Malaysia	1.7	Philippines	1.5	Thailand	1.5	Switzerland	1.7
16	Poland	1.5	Turkey	1.7	Taiwan	1.1	Thailand	1.4	Hungary	1.5	Viet Nam	1.4
17	Singapore	1.3	Thailand	1.6	Canada	1.1	Czech Rep.	1.4	Sweden	1.4	Ireland	1.3
18	UAE	1.1	Poland	1.4	Israel	1.0	Poland	1.2	Romania	1.4	Canada	1.1
19	Sweden	1.1	Sweden	1.3	Austria	0.9	Canada	1.2	Taiwan	1.4	Hong Kong	1.0
20	Austria	1.1	India	1.2	Poland	0.9	Hong Kong	1.1	Netherlands	1.4	Philippines	0.7

UAE = United Arab Emirates, UK = United Kingdom, US = United States. Note: East Asian countries, including Hong Kong and Taiwan, are highlighted. Source: Authors' calculation.

In 2021, machinery IPNs faced new challenges, including a shortage of containers, a shortage of semiconductors, and the emergence of the delta variant of COVID-19. Although several countries experienced sporadic declines in specific sectors, East Asia has maintained its machinery exports beyond the pre-pandemic levels.⁵

On the other hand, the negative impacts were serious for machinery IPNs in North America and Europe, though they also showed a V-shaped recovery in 2020. In particular, their transport equipment exports had a more prolonged depression. In the case of North America, transport equipment exports experienced the greatest drop in April and May 2020, with a decline of 80% for final products and

⁵ According to Ando and Hayakawa (2021), we observe, for instance, a drastic export decline of transport equipment final products in August and September 2021 in Japan, likely reflecting the shortage of semiconductors, a severe decrease in July in Indonesia due to a rapid expansion of the delta variant of COVID-19, and drastic declines in August and September in the transport equipment sectors of several AMS. On the other hand, China experienced an outstanding export increase in transport equipment final products from July to September, reflecting the expanding production of electric vehicles (EVs) in China by major EV manufactures such as Tesla and Volkswagen.

70% for parts and components. In addition, they began to decline again in 2021 after returning to pre-pandemic levels at the end of 2020. Similarly, in the case of Europe, transport equipment exports reached their lowest level in April 2020, with a decline of 80% for final products and 60% for parts and components. Although the export recovery by Europe since June 2020 was rapid for all machinery sectors, including the transport equipment sector, transport equipment exports returned to a declining trend in 2021 and fluctuated below pre-pandemic levels at least until August 2021.

To uncover the extent and depth of machinery IPNs in East Asia with the features mentioned above, we examine the pre-pandemic performance of machinery trade in the following sections.

3. Method and Data to Evaluate the Degree of Involvement in Machinery Trade

This section explains how to evaluate the extent and depth of machinery IPNs in East Asia and other regions. We employ the same methodology used in Ando, Yamanouchi, and Kimura (2021).⁶ Specifically, we first estimate a traditional gravity equation for machinery trade (HS84-92). Then, we calculate the predicted values of bilateral machinery trade as fitted values to the estimated equation. The ratio of the actual trade value to the predicted value indicates the degree of actual trade from the perspective of the level predicted by the model, taking into account the economic size and the geographical conditions.

The gravity model is estimated in a conventional manner (Yotov et al., 2016). The estimating equation is as follows:

$$X_{ij} = \exp(\mathbf{x}_i \boldsymbol{\beta}_1 + \mathbf{x}_j \boldsymbol{\beta}_2 + \boldsymbol{d}_{ij} \boldsymbol{\beta}_3) * u_{ij}.$$

⁶ Their gap ratio is essentially the same concept as the export potential proposed by Mulabdic and Yasar (2021).

 X_{ij} denotes the export value of machinery goods from country *i* to country *j* in 2019 (or 2010). x_i denotes a vector of explanatory variables specific to export country i. We include the log of GDP, log of population, WTO membership dummy, and log of remoteness index in the set of explanatory variables.⁷ x_i denotes a vector of explanatory variables specific to import country j, and we use the same set of variables for importers as exporters. d_{ij} denotes a vector of bilateral variables of the country pair i and j, which includes bilateral distance, a contiguity dummy, a common language dummy, a common religion index, and a common coloniser dummy. u_{ii} is disturbance. Following Santos Silva and Tenreyro (2006), we estimate the above equation by Poisson pseudo maximum likelihood (PPML). We recognise that our estimating equation is in a naïve form (Head and Mayer, 2014), and the use of panel data and country-pair fixed effects is usually recommended. Nevertheless, we prefer using the conventional gravity model for estimation rather than using more sophisticated techniques because the purpose of our estimation is to evaluate how vigorous a country or a region trades machinery products given their economic size and geographical conditions.

In the second step, we calculate the predicted values, using estimated coefficients obtained in the first step as well as explanatory variables, to obtain the gap ratios between the actual and predicted values. The variation in unobservable bilateral factors is excluded from the predicted values. We can therefore interpret them as appropriate values for their economic size and geographical conditions. The predicted trade value for a region is calculated by totalling the predicted values of the countries in the region, as the actual trade value. Adding up the constraints of the PPML estimator ensures that the sum of the predicted values in the world must be equal to the world trade value.

The data for machinery trade were obtained from the BACI database of the Centre d'Etudes Prospectives et d'Informations Internationales (CEPII), which

⁷ Head and Mayer (2014) criticised the remoteness index because it is not supported by theoretical background. We, however, use the index because our estimation is not based on a specific theory.

provides disaggregated data on bilateral trade flows for more than 5,000 products and 200 countries. The data for other variables used in the estimation of the gravity equation were obtained from the BACI database and the Gravity database of the CEPII, respectively.⁸ Our sample comprises 176 countries and regions (see Table A1 in the Appendix).

4. Results

Table 2 shows the results of the gravity estimation in the first step.⁹ The coefficients for GDP and WTO membership of both the origin and destination countries are positive and statistically significant. This suggests that countries with a larger economic size and WTO member countries tend to have larger machinery trade in terms of both origin and destination. The results are negative with statistical significance for the population of destination countries, distance, and common religion, while positive with statistical significance for remoteness of destination countries, contiguity, and common coloniser. This implies that countries with a smaller population and countries that are isolated from other countries are more likely to import machinery goods, and that countries without a common religion, countries within a shorter distance, countries sharing borders, and countries with common colonisers tend to have larger machinery trade. The coefficients for population and remoteness of origin countries and common language are insignificant. This indicates that the population size and the remoteness of origin countries, as well as whether countries have a common language, do not matter much for machinery trade.

⁸ The BACI database was constructed by Gaulier and Zignago (2010). The Gravity database was constructed by Head, Mayer, and Ries (2010) and Head and Mayer (2014).

⁹ The corresponding results for 2010 are presented in Table A2 in the Appendix.

Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)
ln(Origin GDP)	0.946***	0.928***	0.968***	0.892***	1.016***	0.819***	0.963***
	(0.0440)	(0.0402)	(0.0569)	(0.0499)	(0.0570)	(0.0575)	(0.0657)
In(Destination GDP)	0.984***	1.054***	0.917***	0.965***	1.029***	0.967***	1.079***
	(0.0668)	(0.0783)	(0.0629)	(0.0692)	(0.103)	(0.0790)	(0.129)
ln(Origin population)	-0.00924	0.0566	-0.0775	0.0570	-0.100**	0.0782	-0.0706
	(0.0518)	(0.0495)	(0.0634)	(0.0626)	(0.0489)	(0.0717)	(0.0595)
ln(Destination population)	-0.264***	-0.337***	-0.194**	-0.261***	-0.300***	-0.289***	-0.304**
	(0.0710)	(0.0733)	(0.0790)	(0.0791)	(0.0934)	(0.0977)	(0.119)
Origin WTO membership	2.283***	2.029***	2.607***	2.707***	1.506***	3.122***	1.818***
	(0.438)	(0.464)	(0.416)	(0.444)	(0.457)	(0.414)	(0.599)
Destination WTO membership	0.426**	0.0765	0.896***	0.559***	0.0228	0.880***	-0.00242
-	(0.172)	(0.192)	(0.164)	(0.191)	(0.223)	(0.265)	(0.237)
ln(Origin remoteness)	-0.0616	-0.256**	0.140	0.0765	-0.333**	0.367**	-0.245
	(0.128)	(0.128)	(0.149)	(0.144)	(0.169)	(0.184)	(0.207)
ln(Destination remoteness)	0.452***	0.357**	0.562***	0.524***	0.364**	0.625***	0.364*
	(0.143)	(0.139)	(0.169)	(0.164)	(0.163)	(0.188)	(0.193)
ln(Distance)	-0.688***	-0.550***	-0.841***	-0.758***	-0.588***	-0.877***	-0.660***
	(0.0569)	(0.0478)	(0.0755)	(0.0680)	(0.0603)	(0.0853)	(0.0712)
Contiguity dummy	0.698**	0.837***	0.564*	0.657**	0.934***	0.628	0.998***
	(0.293)	(0.297)	(0.330)	(0.315)	(0.346)	(0.404)	(0.382)
Common language dummy	-0.0339	-0.253	0.199	0.116	-0.472*	0.362	-0.636**
	(0.221)	(0.211)	(0.252)	(0.241)	(0.241)	(0.284)	(0.287)
Common coloniser dummy	0.595**	0.351*	0.690*	0.591*	0.336*	0.588	-0.537***
	(0.280)	(0.180)	(0.371)	(0.347)	(0.203)	(0.419)	(0.201)
Common religion index	-0.732***	-0.145	-1.525***	-1.407***	0.401**	-2.567***	0.542***
Ū.	(0.277)	(0.201)	(0.420)	(0.415)	(0.158)	(0.712)	(0.183)
Constant	6.489	0.0744	11.84***	9.420**	-0.131	16.27***	1.105
	(4.048)	(4.435)	(4.178)	(4.125)	(5.725)	(4.431)	(6.962)
Observations	30,450	30,450	30,450	30,450	30,450	30,450	30,450
R-squared	0.508	0.572	0.382	0.417	0.527	0.305	0.464
pseudo log-likelihood	-4262841	-2103155	-2573786	-3382415	-1335400	-2580101	-1187128
product	all	final	parts	section16	section17	hs85	hs87

Table 2: Results of Gravity Estimation, 2019

GDP = gross domestic product, WTO = World Trade Organization.

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Source: Authors' calculation.

Table 3 shows the actual and predicted values of machinery trade and their gap ratios for each country/region of the world for 2019, and Table 4 is the aggregated version to shed light on machinery IPNs in three regions. Similarly, Table 5 is the aggregated version showing (a) machinery final products and (b) machinery parts and components separately.¹⁰ In these tables, East Asia comprises the ASEAN+3 countries (Factory Asia), while North America and Europe refer to Canada, Mexico, and the US (Factory America) and the 27 EU member countries and the United Kingdom (Factory Europe), respectively.

¹⁰ The table for machinery final products and parts and components for 2019, which corresponds to Table 3, is available upon request.

Exporter	Value			D		Australia		Nth		Dent of the	T- 4-1
(row)/ Importer	(\$ million),	China	Japan	Rep. of Korea	ASEAN	and New	India	North America	Europe	Rest of the world	Total (World)
(column)	%			Korea		Zealand		America		world	(world)
(1010111)	Actual (A)		75,889	58,515	161,657	7,708	37,831	296,546	249,381	476,571	1,364,100
China	Predicted (B)		118,568	65,893	72,285	9,463	50,069	163,984	177,079	295,714	953,054
	(A)/(B) (%)		64	89	224	81	76	181	141	161	143
	Actual (A)	81,031		20,245	59,962	2,582	5,817	126,272	64,669	110,199	470,778
Japan	Predicted (B)	74,293		22,386	21,715	3,928	7,176	64,147	60,411	84,697	338,752
	(A)/(B) (%)	109		90	276	66	81	197	107	130	139
	Actual (A)	84,679	9,161		54,181	744	6,551	66,569	36,682	77,051	335,618
Rep. of Korea		45,860	24,865		8,639	1,307	2,996	21,772	22,348	35,613	163,400
	(A)/(B) (%)	185	37		627	57	219	306	164	216	205
	Actual (A)	83,070	39,456	24,559	122,552	4,107	17,733	117,662	83,934	151,101	644,176
ASEAN	Predicted (B)	39,799	18,528	6,644	45,225	2,846	8,388	34,797	38,940	65,409	260,576
	(A)/(B) (%)	209	213	370	271	144	211	338	216		247
Australia and	Actual (A)	114	57	66	373	11	45	1,215	930	8,395	11,206
New Zealand	Predicted (B)	2,694	1,766	531	1,521	300	540	7,916	5,269	13,322	33,859
	(A)/(B) (%)	4	3	12	25	4	8	15	18	63	33
T 11	Actual (A)	1,971	792	566	9,107	228		13,273	11,687	27,601	65,224
India	Predicted (B)	56,238	12,864	4,836	18,953	2,042		32,905	45,745	87,819	261,402 25
	(A)/(B) (%)	63,106	6	12	48 43,379	11	0.229	40 617,230	26 161,678	<i>31</i> 177,220	1,129,577
North	Actual (A)	,	28,621	23,338 20,088	43,379 42,259	5,678 15,982	9,328 18,806	· · · ·	291,501	· · · ·	1,129,577
America	Predicted (B) (A)/(B) (%)	105,297 60	65,732 44	20,088	42,239 103	15,982	18,800	591,802 104	291,501	327,579 54	1,479,047 76
	$\frac{(A)/(B)}{(A)}$	144.804	37.144	30.659	64.599	8.846	24,562	286.773	1,517,637	428,107	2,543,132
Europe	Predicted (B)	122,616	66,879	22,266	51,213	11,851	24,302	318,751	1,298,753	542,040	2,343,132
Europe	(A)/(B) (%)	122,010	56	138	126	75	88	90	1,298,755	79	2,402,544
	$\frac{(A)/(B)}{(Y0)}$	92,501	22,859	16,508	60,029	8,727	21,201	95,207	180,288	192,063	689,382
Rest of the	Predicted (B)	137,665	59,758	23,082	55,204	17,478	38,627	227,839	380,672	360,433	1,300,757
world	(A)/(B) (%)	67	38	23,082	109	50	55	42	47	53	53
	Actual (A)	551.277	213.978	174,456	575,838	38,631	123.069	1.620.747	2,306,885	1,648,311	7,253,193
Total (World)		584,462	368,959	165,726	317,013	65,196	154,578	1,463,914	2,320,719	1,812,625	7,253,192
	(A)/(B) (%)	94	58	105	182	59	80	111	99	91	100
L						• • •					

Table 3: Actual and Predicted Machinery Trade, 2019

Notes: 'Actual (A)' denotes the actual values of specific country/region pairs, 'Predicted (B)' denotes the corresponding predicted values, and '(A)/(B) (%)' denotes the ratio of actual to predicted values in percentage. North America refers to Canada, Mexico, and the United States; Europe refers to the 27 European Union member countries and the United Kingdom; and 'Rest of the world' refers to 128 countries and regions, including Hong Kong, Macao, and Taiwan. The predicted values for regions are calculated by totalling the member countries' predicted values. Source: Authors' calculation.

Table 4: Actual and Predicted Machinery Trade for Three Major Regions,

			2017			
Exporter (row)/ Importer (column)	Value (\$ million), %	East Asia	North America	Europe	Rest of the world	Total (World)
	Actual (A)	874,958	607,050	434,667	897,997	2,814,672
East Asia	Predicted (B)	564,700	284,701	298,778	567,605	1,715,783
	(A)/(B) (%)	155	213	145	158	164
	Actual (A)	158,443	617,230	161,678	192,226	1,129,577
North America	Predicted (B)	233,376	591,802	291,501	362,368	1,479,047
	(A)/(B) (%)	68	104	55	53	76
	Actual (A)	277,206	286,773	1,517,637	461,516	2,543,132
Europe	Predicted (B)	262,974	318,751	1,298,753	581,866	2,462,344
	(A)/(B) (%)	105	90	117	79	103
	Actual (A)	204,942	109,694	192,904	258,272	765,812
Rest of the world	Predicted (B)	375,111	268,660	431,686	520,561	1,596,019
	(A)/(B) (%)	55	41	45	50	48
	Actual (A)	1,515,549	1,620,747	2,306,885	1,810,011	7,253,193
Total (World)	Predicted (B)	1,436,160	1,463,914	2,320,719	2,032,400	7,253,193
	(A)/(B) (%)	106	111	99	89	100

2019

Notes: 'Actual (A)' denotes the actual values of specific country/region pairs, 'Predicted (B)' denotes the corresponding predicted values, and '(A)/(B) (%)' denotes the ratio of actual to predicted values in percentage. East Asia refers to the Association of Southeast Asian Nations (ASEAN) Plus Three countries; North America refers to Canada, Mexico, and the United States; Europe refers to the 27 European Union member countries and the United Kingdom; and 'Rest of the world' refers to 128 countries and regions in Table 3 plus Australia, New Zealand, and India. Source: Authors' calculation.

Table 5: Actual and Predicted Machinery Final and Parts Trade for Three

Major Regions, 2019

(a) Machinery final products

Exporter (row)/ Importer (column)	Value (\$ million), %	East Asia	North America	Europe	Rest of the world	Total (World)
	Actual (A)	324,138	366,838	264,327	452,041	1,407,343
East Asia	Predicted (B)	246,955	170,022	185,804	295,464	898,245
	(A)/(B) (%)	131	216	142	153	157
	Actual (A)	80,302	346,496	98,509	115,329	640,636
North America	Predicted (B)	120,477	283,655	179,980	186,445	770,557
	(A)/(B) (%)	67	122	55	62	83
	Actual (A)	153,114	161,200	874,782	274,152	1,463,248
Europe	Predicted (B)	147,028	203,399	740,159	317,146	1,407,733
	(A)/(B) (%)	104	79	118	86	104
	Actual (A)	55,586	57,537	109,080	147,342	369,545
Rest of the world	Predicted (B)	182,034	144,614	232,524	245,066	804,238
	(A)/(B) (%)	31	40	47	60	46
	Actual (A)	613,140	932,070	1,346,699	988,863	3,880,772
Total (World)	Predicted (B)	696,494	801,690	1,338,468	1,044,121	3,880,772
	(A)/(B) (%)	88	116	101	95	100

(b) Machinery parts and components

Exporter (row)/ Importer (column)	Value (\$ million), %	East Asia	North America	Europe	Rest of the world	Total (World)
	Actual (A)	550,821	240,212	170,340	445,956	1,407,328
East Asia	Predicted (B)	325,939	116,372	116,424	273,188	831,922
	(A)/(B) (%)	169	206	146	163	169
	Actual (A)	78,141	270,734	63,169	76,897	488,941
North America	Predicted (B)	110,466	303,043	112,290	173,316	699,115
	(A)/(B) (%)	71	89	56	44	70
	Actual (A)	124,092	125,573	642,854	187,364	1,079,884
Europe	Predicted (B)	114,790	118,886	556,542	264,690	1,054,908
	(A)/(B) (%)	108	106	116	71	102
	Actual (A)	149,355	52,158	83,824	110,930	396,267
Rest of the world	Predicted (B)	194,268	120,963	196,716	274,527	786,475
	(A)/(B) (%)	77	43	43	40	50
	Actual (A)	902,409	688,677	960,186	821,147	3,372,420
Total (World)	Predicted (B)	745,462	659,264	981,973	985,721	3,372,420
	(A)/(B) (%)	121	104	98	83	100

Notes: 'Actual (A)' denotes the actual values of specific country/region pairs, 'Predicted (B)' denotes the corresponding predicted values, and '(A)/(B) (%)' denotes the ratio of actual to predicted values in percentage. East Asia refers to Association of Southeast Asian Nations (ASEAN) Plus Three countries; North America refers to Canada, Mexico, and the United States; Europe refers to the 27 European Union member countries and the United Kingdom; and 'Rest of the world' refers to 128 countries and regions in Table 3 plus Australia, New Zealand, and India. Source: Authors' calculation.

Our results provide several interesting insights. First, machinery trade is basically regional within Factory Asia, Factory America, and Factory Europe, but inter-regional linkages are also strong for Factory Asia. The second unbundling or trade in machinery parts and components is actively conducted within a region because such transactions require the procurement at appropriate timing, subtle coordination amongst production blocks, low services link costs, tight information and information and communication technology (ICT) connectivity, reliable logistics connectivity, and so on. In that sense, it is natural to have active trade within a region. The intra-regional gap ratios over 100% for each region confirm active machinery trade within a region for Factory Asia, Factory America, and Factory Europe: 155% (131% for machinery final products only) for East Asia, 104% (122%) for North America, and 117% (118%) for Europe.

On the other hand, inter-regional linkages are also substantial for East Asia. Exports by East Asia reveal that not only the intra-regional gap ratio (155%) but also the inter-regional gap ratios (213% for North America and 145% for Europe) are high. This indicates that Factory Asia has strong linkages with Factory America and Factory Europe as a supplier. Moreover, the corresponding ratios are high for both machinery final products and machinery parts and components: 216% and 206% in the case of exports from East Asia to North America and 142% and 146% in the case of exports to Europe, respectively.¹¹ Furthermore, the inter-regional gap ratios are even higher than the intra-regional ratios of East Asia for both final products and parts and components in the case of exports to Europe. These results suggest that Factory Asia has played an important role not only as a supplier of intermediate goods but also as a supplier of final products in these two regions. In other words, Factory Asia is open to the world.

In contrast, the inter-regional gap ratios for exports by North America and Europe are lower than the aforementioned ratios for exports by East Asia: much less than 100% for North America and more or less 100% for Europe. In addition, the intra-regional gap ratios are likely to rise in North America and Europe: the ratios increased from 87% in 2010 to 104% in 2019 (from 104% to 122% for final products and from 73% to 89% for parts and components) for North America, and from 112% to 117% (from 112% to 118% for final products and from 112% to 117% or parts and components) for Europe (Tables 3 and 4 for 2019 and Table A3 in the Appendix for 2010). Such a tendency implies stronger regionalisation and possibly regional reshoring for Factory America and Factory Europe.

Second, ASEAN has been playing an important role in Factory Asia. Table 3 confirms ASEAN's tight connectivity not only amongst AMS but also with other East Asian countries in terms of both exports and imports. Specifically, intra-ASEAN trade and ASEAN trade with China, Japan, and the Republic of Korea (henceforth, Korea) are more than twice the predicted values for both

¹¹ These ratios were already high in 2010. The table corresponding to Table 4 for 2010 is available upon request.

exports and imports. This suggests that ASEAN participates in machinery IPNs in East Asia much more actively than the predicted levels explained by the model, considering its economic size and distance, and plays a central role in machinery IPNs in East Asia. Moreover, exports from ASEAN to North America and Europe are also more than twice their predicted values, with gap ratios of 338% and 216%, respectively. This indicates that ASEAN contributes to the active inter-regional linkages with these two regions.

On the other hand, as for trade amongst China, Japan, and Korea, these countries are not connected each other as closely as we expected, after controlling for country size and geographical distance: China's exports to Japan and Korea (64% and 89%), Japan's to Korea (90%), and Korea's to Japan (37%) are lower than predicted. Moreover, the rest of the countries within the ASEAN+6 – Australia, New Zealand, and India – are not active in machinery trade. Their connection with ASEAN in terms of exports is much weaker than that in terms of imports and is even below the predicted levels (25% and 48%, respectively).¹² Their connection with China, Japan, and Korea is also low, with much lower actual values than predicted for all cases of exports and imports except the case of India's imports from Korea (219%), and the corresponding gap ratios for exports are even lower: less than 10% for their exports to China and Japan and 12% for those to Korea.

Third, with a focus on individual AMS except Brunei Darussalam, some countries are global players while others are regional players. The original AMS other than Brunei and Indonesia – Malaysia, the Philippines, Singapore, and Thailand – as well as Viet Nam have larger intra-ASEAN trade than the predicted values by almost twice or even more than twice for both exports and imports (Table 6).¹³ In addition, these five countries are tightly connected with diversified

¹² Their connection with ASEAN in terms of imports became stronger in the 2010s – from 88% to 144% for Australia and New Zealand and from 132% to 211% for India – but is still lower than the case of ASEAN's exports to the world (247%) in 2019. See Table A3 in the Appendix for the table corresponding to Table 3 for 2010.

¹³ All cases of their trade in terms of both exports and imports, except imports by Malaysia from

AMS, as suggested by the large gap ratios for their exports to individual AMS.¹⁴ Moreover, gap ratios for their exports to China, Japan, and Korea and those for their exports to the world are high – around 200% or much larger than 200%, which indicates that exports by these AMS to the world as well as their exports to China, Japan, and Korea are larger than the predicted values by almost twice or much more than twice. These findings suggest that the aforementioned five AMS – Malaysia, the Philippines, Singapore, Thailand, Viet Nam – have been global suppliers of machinery goods.

other AMS with a gap ratio of slightly less than 200%, show that the corresponding ratios are much larger than 200%.

¹⁴ For instance, Singapore has large exports to most other AMS. Thailand specialises in the automobile sector; exports in this industry account for \$9 billion out of machinery exports of \$24 billion. The Philippines has a particularly close relationship with Singapore amongst the AMS.

Exporter (row)/ Importer (column)	Value (\$ million), %	Singapore	Brunei	Malaysia	Thailand		Philippines			Cambodia	·	ASEAN	China, Japan, and Rep. of Korea	Total (World)
Singapore	Actual (A) Predicted (B) (A)/(B) (%)		393 128 <i>309</i>	13,234 5,444 <i>243</i>	3,955 678 583	5,543 1,469 <i>377</i>	4,543 274 1,657	3,470 210 1,653	30 34 88	338 59 572	815 150 <i>543</i>	32,321 8,446 <i>383</i>	34,364 6,468 <i>531</i>	156,011 34,514 452
Brunei	Actual (A) Predicted (B) (A)/(B) (%)	90 74 122		55 70 79	4 25 15	2 38 5	0 19 1	4 10 38	0 1 2	0 2 0	0 6 0	155 245 63	42 327 13	250 1,416 18
Malaysia	Actual (A) Predicted (B) (A)/(B) (%)	19,879 8,476 235	110 188 59		6,593 1,486 <i>444</i>	1,785 2,124 <i>84</i>	1,609 269 598	2,958 214 1,384	8 36 22	97 62 156	86 161 <i>54</i>	33,125 13,015 255	27,355 6,308 <i>434</i>	147,174 38,377 383
Thailand	Actual (A) Predicted (B) (A)/(B) (%)	3,786 1,310 289	49 82 59	4,377 1,844 <i>237</i>		3,574 1,114 <i>321</i>	3,860 435 888	4,798 513 <i>935</i>	915 231 397	1,581 283 559	827 538 154	23,768 6,348 <i>374</i>	22,145 11,006 201	113,417 44,997 252
Indonesia	Actual (A) Predicted (B) (A)/(B) (%)	3,471 3,323 104	40 150 26	1,210 3,087 <i>39</i>	2,311 1,305 <i>177</i>		3,226 691 467	1,851 455 <i>407</i>	21 71 30	91 109 83	147 171 86	12,367 9,361 <i>132</i>	4,551 16,248 28	30,530 70,177 44
Philippines	Actual (A) Predicted (B) (A)/(B) (%)	5,852 608 962	2 74 3	1,497 383 <i>391</i>	2,189 499 <i>438</i>	473 678 70		1,061 239 445	0 32 0	10 44 23	6 65 9	11,090 2,623 <i>423</i>	17,663 9,235 <i>191</i>	62,111 27,307 227
Viet Nam	Actual (A) Predicted (B) (A)/(B) (%)	1,718 492 <i>349</i>	20 40 51	1,493 322 464	2,535 623 407	1,122 472 238	1,073 252 425		105 225 47	295 162 <i>182</i>	244 85 286	8,606 2,674 <i>322</i>	40,332 11,129 362	131,657 28,431 463
Lao PDR	Actual (A) Predicted (B) (A)/(B) (%)	6 45 13	0 3 0	8 30 28	397 159 250	4 42 9	0 19 0	27 127 <i>21</i>		1 17 8	0 19 <i>1</i>	444 462 96	82 814 10	770 2,460 <i>31</i>
Cambodia	Actual (A) Predicted (B) (A)/(B) (%)	8 91 9	0 6 0	16 62 27	202 225 90	1 74 2	62 30 206	47 107 44	1 19 7		2 10 18	341 624 55	346 658 53	1,403 2,906 48
Myanmar	Actual (A) Predicted (B) (A)/(B) (%)	133 304 44	0 19 0	13 209 6	113 564 20	6 153 4	11 60 19	60 74 <i>81</i>	0 30 0	0 13 1		336 1,426 <i>24</i>	205 2,777 7	852 9,993 9
ASEAN	Actual (A) Predicted (B) (A)/(B) (%)	34,944 14,723 237	614 690 89	21,904 11,451 <i>191</i>	18,299 5,563 <i>329</i>	12,510 6,163 203	14,385 2,050 <i>702</i>	14,276 1,948 <i>733</i>	1,082 679 159	2,412 752 <i>321</i>	2,126 1,205 <i>177</i>	122,552 45,225 271	147,085 64,971 226	644,176 260,576 247
China, Japan, and Rep. of Korea	Actual (A) Predicted (B) (A)/(B) (%)	49,071 18,495 265	427 1,609 27	34,230 11,602 <i>295</i>	41,200 16,517 <i>249</i>	31,174 20,509 <i>152</i>	25,148 11,853 <i>212</i>	86,404 14,692 588	995 1,893 53	2,485 1,236 <i>201</i>	4,664 4,234 <i>110</i>	275,800 102,639 <i>269</i>	329,520 351,865 <i>94</i>	2,170,496 1,455,207 <i>149</i>
Total (World)	Actual (A) Predicted (B) (A)/(B) (%)	154,458 72,025 <i>214</i>	1,729 5,168 <i>33</i>	86,621 47,512 <i>182</i>	81,632 50,633 <i>161</i>	58,174 65,241 89	57,501 27,378 210	119,042 28,933 <i>411</i>	2,257 4,342 52	6,313 4,069 <i>155</i>	8,112 11,713 69	575,838 317,013 <i>182</i>	939,711 1,119,147 <i>84</i>	7,253,192 7,253,192 <i>100</i>

Table 6: Actual and Predicted Machinery Trade for Individual ASEAN Member States, 2019

ASEAN = Association of Southeast Asian Nations.

Notes: 'Actual (A)' denotes the actual values of specific country/region pairs, 'Predicted (B)' denotes the corresponding predicted values, and '(A)/(B) (%)' denotes the ratio of actual to predicted values in percentage. The predicted values for regions are calculated by totalling the member countries' predicted values. Source: Authors' calculation.

In contrast, Indonesia, the Lao People's Democratic Republic (Lao PDR), Cambodia, and Myanmar seem to be regional players. In the case of Indonesia, its exports to the Philippines and Viet Nam are much higher than the predicted values, and those to ASEAN slightly increased from 120% to 132% in the 2010s, but its gap ratio is still substantially lower than the ratios of other AMS that are mentioned above as global players.¹⁵ As for the Lao PDR, Cambodia, and Myanmar, their exports to AMS are still less than the predicted values in 2019, though the export values expanded in the 2010s. Since Cambodia and Myanmar significantly increased the corresponding ratios for imports, these countries have just started to be involved in IPNs in East Asia. The Lao PDR has strong connections with only Thailand; its export value to Thailand is 2.5 times higher than predicted. Besides, exports from these four countries to China, Japan, and Korea, as well as those to the world, are much less than the predicted levels. This implies that four countries contribute to Factory Asia as regional players.

Fourth, the extent and depth of machinery IPNs in East Asia developed further in the 2010s. We observe a drastic change for some countries, particularly Viet Nam. As mentioned above, Viet Nam became one of the global players by the end of the 2010s. However, at the beginning of the 2010s, its exports to the world (and those to China, Japan, and Korea) were less than the predicted level as the gap ratio of 95% (87%) suggests. Indeed, Viet Nam significantly expanded trade with ASEAN in the 2010s; the gap ratios increased from 144% in 2010 to 322% in 2019 for exports and from 392% to 732% for imports. This indicates how rapidly Viet Nam became involved in IPNs in the 2010s and transformed into one of the core players. In addition, Viet Nam substantially expanded exports to the world, including China, Japan, and Korea).

¹⁵ See Table A4 in the Appendix for the table corresponding to Table 6 for 2010.

In addition to Viet Nam, some low-income countries – particularly Cambodia – substantially changed the international division of labour in the 2010s. In 2010, the Lao PDR and Cambodia had machinery exports mostly to Thailand alone, while Myanmar had almost no machinery exports. However, the destinations of exports from Cambodia and Myanmar were diversified amongst AMS (such as Thailand, the Philippines, and Viet Nam) and other East Asian countries by the end of the 2010s, though their actual exports were still lower than predicted. In addition, their gap ratios for imports from ASEAN and other East Asian countries significantly increased to reach 321% and 201% for Cambodia and 177% and 110% for Myanmar, respectively. Thus, these two countries have just started to be involved in IPNs in East Asia, but Cambodia achieved a particularly outstanding change in terms of participating in Factory Asia. The drastic change in Viet Nam and these countries confirms the further development in the extent and depth of machinery IPNs in East Asia in the 2010s.

Fifth, inter-regional linkages in addition to intra-regional linkages for East Asia are more strongly observed for general and electric machinery exports. Table 7 shows the results of (a) general and electric machinery trade and (b) transport equipment trade for three major regions.¹⁶ In the case of East Asia, inter-regional linkages with North America and Europe are stronger for general and electric machinery exports (particularly electric machinery exports only) than for the whole machinery exports; gap ratios are 231% (252%) for North America and 166% (184%) for Europe for general and electric machinery exports (electric machinery exports only), which are larger than those for the whole machinery sector, 213% and 145%. In addition, exports to these two regions from East Asia are above the predicted levels even in the transport equipment sector, with gap ratios of 196% and 100%, respectively – particularly automobile exports, with

¹⁶ See Table A5 in the Appendix for the results for (a) electric machinery trade and (b) automobile trade.

ratios of 226% and 113% – although inter-regional linkages are not as strong as in the general and electric machinery sector.

Exporter (row)/ Importer (column)	Value (\$ million), %	East Asia	North America	Europe	Rest of the world	Total (World)
	Actual (A)	704,143	449,603	336,265	691,745	2,181,757
East Asia	Predicted (B)	438,661	194,263	202,735	430,208	1,265,867
	(A)/(B) (%)	161	231	166	161	172
	Actual (A)	85,729	322,198	77,617	106,603	592,147
North America	Predicted (B)	150,854	376,919	165,018	236,790	929,580
	(A)/(B) (%)	57	85	47	45	64
	Actual (A)	146,020	150,032	819,874	266,816	1,382,742
Europe	Predicted (B)	149,580	161,754	699,557	340,819	1,351,709
	(A)/(B) (%)	<u>98</u>	93	117	78	102
	Actual (A)	161,938	69,982	105,830	160,627	498,376
Rest of the world	Predicted (B)	271,010	179,988	282,827	374,039	1,107,865
	(A)/(B) (%)	60	39	37	43	45
	Actual (A)	1,097,830	991,815	1,339,585	1,225,791	4,655,022
Total (World)	Predicted (B)	1,010,105	912,924	1,350,136	1,381,856	4,655,022
	(A)/(B) (%)	109	109	99	89	100

 Table 7: Actual and Predicted Machinery Trade for Two Sectors, 2019

(a) HS84–HS85: General and electric machinery sector

(b) HS86-HS89: Transport equipment sector

Exporter (row)/ Importer (column)	Value (\$ million), %	East Asia	North America	Europe	Rest of the world	Total (World)
	Actual (A)	89,317	117,731	64,754	151,783	423,584
East Asia	Predicted (B)	98,164	60,174	64,961	107,708	331,007
	(A)/(B) (%)	91	196	100	141	128
	Actual (A)	36,105	256,728	49,475	58,556	400,864
North America	Predicted (B)	50,814	149,338	82,941	81,556	364,649
	(A)/(B) (%)	71	172	60	72	110
	Actual (A)	92,225	95,532	581,635	142,085	911,477
Europe	Predicted (B)	75,265	113,988	487,171	175,884	852,308
	(A)/(B) (%)	123	84	119	81	107
	Actual (A)	14,277	20,939	61,603	74,648	171,468
Rest of the world	Predicted (B)	75,637	61,216	109,404	113,171	359,429
	(A)/(B) (%)	19	34	56	66	48
	Actual (A)	231,924	490,930	757,467	427,072	1,907,393
Total (World)	Predicted (B)	299,880	384,717	744,477	478,319	1,907,393
	(A)/(B) (%)	77	128	102	89	100

Notes: 'Actual (A)' denotes the actual values of specific country/region pairs, 'Predicted (B)' denotes the corresponding predicted values, and '(A)/(B) (%)' denotes the ratio of actual to predicted values in percentage. East Asia refers to the Association of Southeast Asian Nations (ASEAN) Plus Three countries; North America refers to Canada, Mexico, and the United States; Europe refers to the 27 European Union member countries and the United Kingdom; and 'Rest of the world' refers to 128 countries and regions in Table 3 plus Australia, New Zealand, and India. Source: Authors' calculation.

In the case of North America, intra-regional linkages are much stronger in the transport equipment sector, with weak connectivity with other regions; the intra-regional gap ratio is 172% in this sector (185% in the automobiles sector only), which is much higher than 104% for the whole machinery sector, while the inter-regional gap ratios with East Asia and Europe are only around 60%–70%. As for Europe, regardless of whether the targeted sectors are broader (Table 7) or specific (Table A5), its exports to East Asia exceed the predicted values in the transport equipment sector (and in the automobile sector only), but do not do so in the general and electric machinery sector (and in the electric machinery sector only).

5. Conclusion

In this paper, we have provided empirical evidence that supports the continuing importance of machinery IPNs in East Asia. We first confirmed their robustness and resilience - even with COVID-19 - particularly for those in East Asia, as well as the significance of East Asian countries as suppliers of machinery final products and parts and components in the world. Worldwide machinery exports achieved a rapid V-shaped recovery in 2020, and the negative impacts on exports were much smaller for East Asia than for North America and Europe. Together with the activated e-commerce transactions, the positive demand shock contributed to such a rapid recovery in East Asia by partially compensating for the effects of the negative supply and demand shocks. Then, we applied a gravity equation to pre-pandemic bilateral machinery trade and compared actual values with fitted values of the estimated equation to show how deeply East Asian countries are committed to machinery IPNs. The gravity estimation exercise demonstrated that machinery trade is basically regional within Factory Asia, Factory America, and Factory Europe, but Factory Asia also has strong inter-regional linkages, contributing as suppliers of machinery parts and components as well as machinery final products to Factory America and Factory

Europe. It also demonstrated that ASEAN has played an important role in Factory Asia, going far beyond the gravity prediction. Furthermore, it showed that the extent and depth of machinery IPNs in East Asia developed further in the 2010s and that East Asia's inter-regional linkages – in addition to intra-regional linkages – are particularly strong in the general and electric machinery sector.

A series of empirical findings indicate ASEAN's strong commitment to machinery IPNs. ASEAN emphasises ASEAN centrality, which is firmly supported by its economic structure. The RCEP, based on the ASEAN initiative, could be used effectively to reduce policy risks throughout East Asia and to maintain the healthy rules-based trading regime. While the decoupling pressure caused by the US–China confrontation and geopolitical tensions may intensify, middle powers wedged between the two superpowers are trying to maintain close economic relationships with both. In practice, the US has a truly deep economic relationship with China, so the decoupling is likely to be limited in scope. What private companies are afraid of is the unlimited application of trade controls and the shrinkage of economic dynamism due to the expanded concept of national security and sensitive technologies. Therefore, it is necessary to keep the coverage governed by the rules-based trading regime as broad as possible.

Digitalised services trade based on the third unbundling by Baldwin (2016) or the person-to-person international division of labour may become a major international division of labour in the coming few decades. Trade in goods, however, is still dominant at this moment. It is important to evaluate properly the value of the importance of IPNs covering East Asia and to make an effort to maintain the economic dynamism.

References

- Ando, M. and K. Hayakawa (2021), 'Global Value Chains and COVID-19: An Update on Machinery Production Networks in East Asia', *ERIA Policy Brief*, No. 2021-04, Jakarta: Economic Research Institute for ASEAN and East Asia (ERIA).
- Ando, M. and K. Hayakawa (2022), 'Does the Import Diversity of Inputs Mitigate the Negative Impact of COVID-19 on Global Value Chains?', *The Journal* of International Trade and Economic Development, 31(2), pp.299–320.
- Ando, M. and F. Kimura (2005), 'The Formation of International Production and Distribution Networks in East Asia', in T. Ito and A.K. Rose (eds.) *International Trade in East Asia*, NBER–East Asia Seminar on Economics, Volume 14, Chicago: University of Chicago Press, pp.177–213.
- Ando, M. and F. Kimura (2012), 'How Did the Japanese Exports Respond to Two Crises in the International Production Networks? The Global Financial Crisis and the Great East Japan Earthquake', *Asian Economic Journal*, 26(3), pp.261–87.
- Ando, M. and F. Kimura (2013), 'Production Linkage of Asia and Europe via Central and Eastern Europe', *Journal of Economic Integration*, 28(2), pp.204–40.
- Ando, M., F. Kimura, and A. Obashi (2021), 'International Production Networks Are Overcoming COVID-19 Shocks: Evidence from Japan's Machinery Trade', Asian Economic Papers, 20(3), pp.40–72.
- Ando, M., K. Yamanouchi, and F. Kimura (2021) 'Potential for India's Entry into Factory Asia: Some Casual Findings from International Trade Data', *ERIA Discussion Paper Series*, No. 381, Jakarta: Economic Research Institute for ASEAN and East Asia (ERIA).

- Baldwin, R. (2016), The Great Convergence: Information Technology and the New Globalization, Cambridge, MA: The Belknap Press of Harvard University Press.
- Gaulier, G. and S. Zignago (2010), 'BACI: International Trade Database at the Product-Level. The 1994–2007 Version', *CEPII Working Paper*, No. 2010-23, Paris: Centre d'Etudes Prospectives et d'Informations Internationales.
- Hayakawa, K. and H. Mukunoki (2021), 'Impacts of COVID-19 on Global Value Chains', *The Developing Economies*, 59(2), pp.154–77.
- Hayakawa, K., H. Mukunoki, and S. Urata (2021), 'Can E-commerce Mitigate the Negative Impact of COVID-19 on International Trade?', *Japanese Economic Review*. <u>https://doi.org/10.1007/s42973-021-00099-3</u> (accessed 1 October 2021).
- Head, K. and T. Mayer (2014), 'Gravity Equations: Workhorse, Toolkit, and Cookbook', in G. Gopinath, E. Helpman, and K. Rogoff (eds.) *Handbook of International Economics*, Volume 4, Amsterdam: Elsevier B.V., pp.131–95.
- Head, K., T. Mayer, and J. Ries (2010), 'The Erosion of Colonial Trade Linkages After Independence', *Journal of International Economics*, 81(1), pp.1–14.
- Kimura, F. (2021), 'RCEP from the Middle Powers' Perspective', *China Economic Journal*, 14(2), pp.162–70.
- Kimura, F. and A. Obashi (2010), 'International Production Networks in Machinery Industries: Structure and Its Evolution', *ERIA Discussion Paper Series*, No. 09, Jakarta: Economic Research Institute for ASEAN and East Asia.
- Miroudot, S. (2020), 'Resilience Versus Robustness in Global Value Chains: Some Policy Implications', VOX CEPR Policy Portal, 18 June. <u>https://voxeu.org/article/resilience-versus-robustness-global-value-chains</u> (accessed 20 December 2020).

- Mulabdic, A. and P. Yasar (2021), 'Gravity Model-Based Export Potential: An Application to Turkey', *Policy Research Working Paper*, No. 9557, Washington, DC: World Bank.
- Obashi, A. (2010), 'Stability of Production Networks in East Asia: Duration and Survival of Trade', *Japan and the World Economy*, 22(1), pp.21–30.
- Obashi, A. and F. Kimura (2018), 'Are Production Networks Passé? Not Yet', *Asian Economic Papers*, 17(3), pp.86–107.
- Okubo, T., F. Kimura, and N. Teshima (2014), 'Asian Fragmentation in the Global Financial Crisis', *International Review of Economics and Finance*, 31, pp.114–27.
- Santos Silva, J.M.C. and S. Tenreyro (2006), 'The Log of Gravity', *Review of Economics and Statistics*, 88(4), pp.641–58.
- Yotov, Y.V., R. Piermartini, J.-A. Monteiro, and M. Larch (2016), An Advanced Guide to Trade Policy Analysis: The Structural Gravity Model. Geneva: World Trade Organization.

Appendix

Table A1: Country List

Afghanistan	Cambodia	Gambia	Latvia	Pakistan	Suriname
Albania	Cameroon	Georgia	Lebanon	Panama	Swaziland
Algeria	Canada	Germany	Lesotho	Papua New Guinea	Sweden
Andorra	Central African Rep.	Ghana	Liberia	Paraguay	Switzerland
Angola	Chad	Greece	Libya	Peru	Taiwan
Antigua and Barbuda	Chile	Grenada	Luxembourg	Philippines	Tajikistan
Argentina	China	Guatemala	Macao	Poland	Thailand
Armenia	Colombia	Guinea	Macedonia	Portugal	Togo
Australia	Comoros	Guinea-Bissau	Madagascar	Qatar	Tonga
Austria	Congo	Guyana	Malawi	Rep. of Korea	Trinidad and Tobago
Azerbaijan	Costa Rica	Haiti	Malaysia	Rep. of Moldova	Tunisia
Bahamas	Côte d'Ivoire	Honduras	Maldives	Romania	Turkey
Bahrain	Croatia	Hong Kong	Mali	Russian Federation	Uganda
Bangladesh	Cyprus	Hungary	Malta	Rwanda	Ukraine
Barbados	Czech Republic	Iceland	Mauritania	Saint Kitts and Nevis	United Arab Emirates
Belarus	Dem. Rep. of the Congo	India	Mauritius	Saint Lucia	United Kingdom
Belgium	Denmark	Indonesia	Mexico	St. Vincent&Grenadines	United States
Belize	Djibouti	Iraq	Mongolia	Samoa	United Rep. of Tanzania
Benin	Dominica	Ireland	Morocco	Sao Tome and Principe	Uruguay
Bermuda	Dominican Rep.	Israel	Mozambique	Saudi Arabia	Uzbekistan
Bhutan	Ecuador	Italy	Myanmar	Senegal	Vanuatu
Bolivia	Egypt	Jamaica	Namibia	Seychelles	Viet Nam
Bosnia Herzegovina	El Salvador	Japan	Nepal	Sierra Leone	Yemen
Botswana	Equatorial Guinea	Jordan	Netherlands	Singapore	Zambia
Brazil	Estonia	Kazakhstan	New Zealand	Slovakia	Zimbabwe
Brunei Darussalam	Ethiopia	Kenya	Nicaragua	Slovenia	
Bulgaria	Fiji	Kiribati	Niger	Solomon Islands	
Burkina Faso	Finland	Kuwait	Nigeria	South Africa	
Burundi	France	Kyrgyzstan	Norway	Spain	
Cabo Verde	Gabon	Lao PDR	Oman	Sri Lanka	

Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)
ln(Origin GDP)	0.897***	0.862***	0.936***	0.833***	1.054***	0.762***	1.063***
	(0.0461)	(0.0434)	(0.0544)	(0.0497)	(0.0539)	(0.0550)	(0.0694)
In(Destination GDP)	0.870***	0.915***	0.828***	0.876***	0.860***	0.906***	0.923***
	(0.0518)	(0.0600)	(0.0495)	(0.0604)	(0.0624)	(0.0657)	(0.0828)
ln(Origin population)	0.0567	0.146**	-0.0354	0.113	-0.0799	0.117	-0.0963
	(0.0637)	(0.0664)	(0.0678)	(0.0742)	(0.0530)	(0.0785)	(0.0661)
ln(Destination population)	-0.147**	-0.211***	-0.0859	-0.155**	-0.168***	-0.219***	-0.136*
	(0.0594)	(0.0541)	(0.0724)	(0.0690)	(0.0556)	(0.0834)	(0.0739)
Origin WTO membership	2.413***	2.218***	2.681***	2.696***	1.738***	3.171***	2.103***
	(0.208)	(0.219)	(0.221)	(0.233)	(0.225)	(0.232)	(0.351)
Destination WTO membership	0.452***	0.156	0.890***	0.640***	-0.0279	0.965***	0.0483
	(0.120)	(0.125)	(0.135)	(0.133)	(0.155)	(0.147)	(0.178)
ln(Origin remoteness)	0.0683	-0.166	0.309**	0.175	-0.166	0.445***	-0.0272
	(0.107)	(0.101)	(0.126)	(0.128)	(0.109)	(0.161)	(0.140)
ln(Destination remoteness)	0.495***	0.419***	0.575***	0.524***	0.456***	0.628***	0.514***
	(0.121)	(0.110)	(0.149)	(0.147)	(0.105)	(0.164)	(0.129)
ln(Distance)	-0.735***	-0.579***	-0.902***	-0.780***	-0.623***	-0.882***	-0.762***
	(0.0681)	(0.0541)	(0.0876)	(0.0744)	(0.0626)	(0.0882)	(0.0742)
Contiguity dummy	0.661**	0.872***	0.435	0.633*	0.946***	0.656	0.839***
	(0.265)	(0.248)	(0.323)	(0.327)	(0.210)	(0.439)	(0.261)
Common language dummy	0.0691	-0.109	0.265	0.177	-0.323**	0.308	-0.401**
	(0.190)	(0.173)	(0.222)	(0.225)	(0.135)	(0.275)	(0.180)
Common coloniser dummy	0.506	0.206	0.644*	0.553	0.0715	0.563	-0.323
	(0.309)	(0.210)	(0.381)	(0.364)	(0.188)	(0.423)	(0.250)
Common religion index	-1.181***	-0.746***	-1.730***	-1.730***	-0.181	-2.391***	0.0962
	(0.276)	(0.217)	(0.383)	(0.400)	(0.188)	(0.600)	(0.226)
Constant	8.953***	1.968	14.60***	10.62***	3.780	17.16***	6.718
	(3.224)	(3.274)	(3.491)	(3.652)	(3.605)	(3.800)	(4.484)
Observations	30,450	30,450	30,450	30,450	30,450	30,450	30,450
R-squared	0.513	0.556	0.414	0.379	0.665	0.268	0.601
pseudo log-likelihood	-3256365	-1696389	-1849790	-2540376	-1046850	-1723387	-770034
product	all	final	parts	section16	section17	hs85	hs87

Table A2: Results of Gravity Estimation, 2010

GDP = gross domestic product, WTO = World Trade Organization.Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Source: Authors' calculation.

Exporter						Australia					
(row)/	Value	China	Japan	Rep. of	ASEAN	and	India	North	Europe	Rest of the	Total
Importer	(\$ million, %)	Cinna	Japan	Korea	ASEAN	New	muia	America	Lurope	world	(World)
(column)	· , , ,					Zealand					
	Actual (A)		61,357	34,720	70,256	5,837	20,252	200,895	194,895	306,947	895,159
China	Predicted (B)		98,784	37,037	40,885	5,782	31,181	75,556	99,167	165,836	554,227
	(A)/(B) (%)		62	94	172	101	65	266	197	185	162
	Actual (A)	92,461		26,971	67,993	2,240	5,390	110,241	71,787	140,295	517,380
Japan	Predicted (B)	58,756		26,427	25,539	5,063	9,641	62,682	70,938	102,445	361,491
	(A)/(B) (%)	157		102	266	44	56	176	101	137	143
	Actual (A)	73,765	11,191		24,744	1,036	5,943	47,576	47,382	86,787	298,426
Rep. of Korea	Predicted (B)	22,400	26,872		6,059	984	2,419	12,332	15,417	25,156	111,639
	(A)/(B) (%)	329	42		408	105	246	386	307	345	267
	Actual (A)	52,845	30,760	13,488	98,785	2,076	9,417	56,587	57,379	103,551	424,888
ASEAN	Predicted (B)	18,892	19,854	4,628	33,993	2,353	7,120	21,307	28,649	48,436	185,232
	(A)/(B) (%)	280	155	291	291	88	132	266	200	214	229
Australia and	Actual (A)	90	89	41	297	9	141	1,567	1,025	10,702	13,963
New Zealand	Predicted (B)	1,758	2,562	492	1,530	315	663	6,664	5,019	15,302	34,305
	(A)/(B) (%)	5	3	8	19	3	21	24	20	70	41
	Actual (A)	663	275	209	5,158	148		4,598	9,095	15,137	35,283
India	Predicted (B)	29,153	15,155	3,740	15,346	1,986		24,514	38,921	73,305	202,119
	(A)/(B) (%)	2	2	6	34	7		19	23	21	17
North	Actual (A)	41,334	25,933	18,227	43,134	6,376	7,657	420,690	123,460	152,993	839,805
America	Predicted (B)	53,670	74,778	14,469	33,137	14,400	18,667	481,303	220,498	272,978	1,183,900
America	(A)/(B) (%)	77	35	126	130	44	41	87	56	56	71
	Actual (A)	100,279	24,625	22,255	49,995	7,803	21,766	175,399	1,208,933	421,630	2,032,685
Europe	Predicted (B)	67,414	81,259	17,356	42,513	10,556	28,100	213,355	1,079,059	479,288	2,018,900
	(A)/(B) (%)	149	30	128	118	74	77	82	112	88	101
Rest of the	Actual (A)	63,689	17,388	15,818	41,579	13,771	8,047	63,739	139,780	149,428	513,239
world	Predicted (B)	59,068	64,072	15,734	39,597	17,673	31,578	144,050	278,169	269,074	919,016
worru	(A)/(B) (%)	108	27	101	105	78	25	44	50	56	56
	Actual (A)	425,128	171,618	131,730	401,941	39,297	78,614	1,081,293	1,853,736	1,387,471	5,570,828
Total (World)	Predicted (B)	311,111	383,335	119,882	238,599	59,113	129,370	1,041,763	1,835,836	1,451,819	5,570,828
	(A)/(B) (%)	137	45	110	168	66	61	104	101	96	100

Table A3: Actual and Predicted Machinery Trade, 2010

ASEAN = Association of Southeast Asian Nations.

Notes: 'Actual (A)' denotes the actual values of specific country/region pairs, 'Predicted (B)' denotes the corresponding predicted values, and '(A)/(B) (%)' denotes the ratio of actual to predicted values in percentage. North America refers to Canada, Mexico, and the United States; Europe refers to the 27 European Union member countries and the United Kingdom; and 'Rest of the world' refers to 128 countries and regions, including Hong Kong, Macao, and Taiwan. The predicted values for regions are calculated by totalling the member countries' predicted values. Source: Authors' calculation.

Exporter (row)/ Importer (column)	Value (\$ million), %	Singapore	Brunei	Malaysia	Thailand		Philippines	Viet Nam		Cambodia	,	ASEAN	China, Japan, and Rep. of Korea	Total (World)
	Actual (A)		244	12,853	4,627	7,841	3,251	1,551	11	137	301	30,816	30,067	136,061
Singapore	Predicted (B)		98	4,238	477	1,186	208	130		38	127	6,514	4,266	23,950
	(A)/(B) (%)		248	303	969	661	1,565	1,193	92	366	237	473	705	568
_	Actual (A)	101		37	16	2	1	0	0	0	~	158	1	200
Brunei	Predicted (B)	53		63	24	38	19	8	1	2	6	215	291	1,239
	(A)/(B) (%)	191		59	68	6	4	4	0	11	0	74	0	16
	Actual (A)	15,495	79		5,487	1,610	1,182	1,040	8	31	50	24,981	24,727	108,725
Malaysia	Predicted (B)	6,021	167		1,203	1,824	218	158		47	162	9,815	4,933	29,125
	(A)/(B) (%)	257	47		456	88	541	659		65	31	255	501	373
-	Actual (A)	4,917	66	5,124		3,886	2,302	1,720	609	621	497	19,744	20,297	93,810
Thailand	Predicted (B)	830	76	1,472		949	326	355		193	546	4,838	7,373	31,920
	(A)/(B) (%)	593	87	348		410	705	485	664	321	91	408	275	294
	Actual (A)	4,870	28	1,129	1,603		945	364	1	5	24	8,968	4,015	24,441
Indonesia	Predicted (B)	2,440	146	2,642	1,123		590	349		85	194	7,599	12,867	56,494
	(A)/(B) (%)	200	19	43	143		160	104		5	12	118	31	43
	Actual (A)	7,463	1	2,052	1,546	383		164	0	3	1	11,614	13,473	47,019
Philippines	Predicted (B)	388	65	287	351	536		150		28	60	1,876	6,125	17,823
	(A)/(B) (%)	1,924	2	715	441	72	200	109		12	2	619	220	264
	Actual (A)	544	1	218	590	306	389		38	102	9	2,197	4,483	14,124
Viet Nam	Predicted (B)	246	29	210	386	321	152		66	79	70	1,560	5,246	15,145
	(A)/(B) (%)	221	3	104	153	96	256		57	128	13	141	85	93
	Actual (A)	0	0	0	51	0	0	4			0	57	1	61
Lao PDR	Predicted (B)	2	0	2	8	2	1	5		1	1	21	30	104
	(A)/(B) (%)	11	0	2	672	1	1	83		107	26	267	2	59
~	Actual (A)	11	0	2	210	1	0	13			0	239	13	394
Cambodia	Predicted (B)	44	4	39	132	49	18	49			8	349	339	1,571
	(A)/(B) (%)	24	0	5	160	3	2	27			1	68	4	25
	Actual (A)	2	0	4	2	0	1	2	0	0		11	17	53
Myanmar	Predicted (B)	205	19	184	507	152	52	60		11		1,204	1,903	7,862
	(A)/(B) (%)	1	0	2	0	0	2	3	0	0		1	1	1
	Actual (A)	33,403	418	21,418	14,133	14,032	8,072	4,859	668	899	882	98,785	97,093	424,888
ASEAN	Predicted (B)	10,229	605	9,137	4,210	5,056	1,584	1,264	249	483	1,174	33,993	43,373	185,232
	(A)/(B) (%)	327	69	234	336	278	510	384	269	186	75	291	224	229
China, Japan,	Actual (A)	44,606	273	28,215	34,171	22,134	15,033	15,418	390	548	2,206	162,993	300,466	1,710,965
and Rep. of	Predicted (B)	11,550	1,432	9,413	11,544	16,671	8,719	8,264	614	777	3,500	72,483	270,276	1,027,356
Korea	(A)/(B) (%)	386	19	300	296	133	172	187		70	63	225	111	167
	Actual (A)	133,761	1,036	80,507	66,142	49,779	36,022	28,329	1,191	1,796	3,378	401,941	728,476	5,570,828
iotal (World)	Predicted (B)	47,608	4,702	38,589	38,135	56,030	20,257	18,100	1,582	2,717	10,879	238,599	814,329	5,570,828
	(A)/(B) (%)	281	22	209	173	89	178	157	75	66	31	168	89	100

Table A4: Actual and Predicted Machinery Trade for ASEAN Member States, 2010

ASEAN = Association of Southeast Asian Nations.

Notes: 'Actual (A)' denotes the actual values of specific country/region pairs, 'Predicted (B)' denotes the corresponding predicted values, and '(A)/(B) (%)' denotes the ratio of actual to predicted values in percentage. The predicted values for regions are calculated by totalling the member countries' predicted values. Source: Authors' calculation.

Table A5: Actual and Predicted Machinery Trade for Two Specific Sectors,

2019

Exporter (row)/ Importer (column)	Value (\$ million), %	East Asia	North America	Europe	Rest of the world	Total (World)
	Actual (A)	467,905	259,219	189,474	475,992	1,392,591
East Asia	Predicted (B)	289,610	102,073	106,126	263,841	761,650
	(A)/(B) (%)	162	254	179	180	183
	Actual (A)	48,734	146,983	31,532	47,806	275,055
North America	Predicted (B)	75,362	203,557	70,325	120,507	469,751
	(A)/(B) (%)	65	72	45	40	59
	Actual (A)	58,423	41,341	355,685	88,093	543,542
Europe	Predicted (B)	64,989	61,444	304,926	160,454	591,813
	(A)/(B) (%)	90	67	117	55	92
	Actual (A)	119,684	32,466	53,883	97,848	303,880
Rest of the world	Predicted (B)	171,361	108,028	166,786	245,679	691,854
	(A)/(B) (%)	70	30	32	40	44
	Actual (A)	694,745	480,009	630,574	709,739	2,515,068
Total (World)	Predicted (B)	601,321	475,102	648,163	790,481	2,515,068
	(A)/(B) (%)	116	101	97	90	100

(a) HS85: Electric machinery sector

(b) HS87: Automobile sector

Exporter (row)/ Importer (column)	Value (\$ million), %	East Asia	North America	Europe	Rest of the world	Total (World)
	Actual (A)	68,415	107,985	52,865	107,691	336,956
East Asia	Predicted (B)	81,712	47,785	46,777	75,421	251,694
	(A)/(B) (%)	84	226	113	143	134
	Actual (A)	19,111	235,407	28,070	35,263	317,851
North America	Predicted (B)	36,205	127,447	59,145	52,614	275,411
	(A)/(B) (%)	53	185	47	67	115
	Actual (A)	63,057	68,683	501,071	96,470	729,281
Europe	Predicted (B)	53,627	90,056	421,602	123,007	688,293
	(A)/(B) (%)	118	76	119	78	106
	Actual (A)	7,782	13,142	45,322	50,509	116,755
Rest of the world	Predicted (B)	62,572	52,598	88,849	81,425	285,445
	(A)/(B) (%)	12	25	51	62	41
	Actual (A)	158,366	425,217	627,328	289,933	1,500,843
Total (World)	Predicted (B)	234,116	317,887	616,373	332,468	1,500,843
	(A)/(B) (%)	68	134	102	87	100

Notes: 'Actual (A)' denotes the actual values of specific country/region pairs, 'Predicted (B)' denotes the corresponding predicted values, and '(A)/(B) (%)' denotes the ratio of actual to predicted values in percentage. East Asia refers to the Association of Southeast Asian Nations (ASEAN) Plus Three countries; North America refers to Canada, Mexico, and the United States; Europe refers to the 27 European Union member countries and the United Kingdom; and 'Rest of the world' refers to 128 countries and regions in Table 3 plus Australia, New Zealand, and India. Source: Authors' calculation.

No.	Author(s)	Title	Year
2021-57	Tadashi ITO and Yukiko	Chief Executive Officer Attributes and	February
(no. 424)	Umeno SATO	Trade	2022
2021-56	Cassey LEE	Global Value Chains and Premature	February
(no. 423)		Deindustrialisation in Malaysia	2022
2021-55	Oscar FERNANDO and Lili	Indonesia's Local Content Requirements:	February
(no. 422)	Yan ING	An Assessment on Consistency with Free	2022
		Trade Agreement Commitments	
2021-54	HA Thi Thanh Doan and	Technical Barriers to Trade, Product	February
(no. 421)	Hongyong ZHANG	Quality and Trade Margins: Firm-level	2022
		Evidence	
2021-53	Oscar FERNANDO and Lili	Indonesia's Local Content Requirements:	February
(no. 420)	Yan ING	An Assessment on Consistency with Free	2022
		Trade Agreement Commitments	
2021-52	Nobuaki YAMASHITA and	Participation in Global Value Chains and	January
(no. 419)	Doan Thi Thanh HA	Rent Sharing by Small Firms in Viet Nam	2022
2021-51	Huy Hoang NGUYEN and	The Nexus between Inward Foreign Direct	January
(no. 418)	Quang Hoan TRUONG	Investment and Global Value Chains in	2022
		Developing Countries: A Case Study of	
		Viet Nam	
2021-50	Ayako OBASHI	Overview of Foreign Direct Investment,	January
(no. 417)		Trade, and Global Value Chains in East	2022
		Asia	
2021-49	Lili Yan ING and Juniarto	Local Content Requirements:	January
(no. 416)	James LOSARI	Assessment from Investment Law	2022
2021-48	Lili Yan ING and Yessy	COVID-19: Impacts on Indonesia's Trade	January

ERIA Discussion Paper Series

(no. 415)	VADILA		2022
2021-47	Michelle LIMANTA and Lili	Indonesia's Local Content Requirements:	January
(no. 414)	Yan ING	Assessment with WTO Rules	2022
222021-46	Chin Hee HAHN and Ju Hyur	Export Market Survival of Pioneers and	December
(no. 413)	PYUN	Followers	2021
2021-45	Subash SASIDHARAN	Market Entry, Survival, and Exit of Firms	December
(no. 412)		in the Aftermath of Natural Hazard-related	2021
		Disasters:	
		A Case Study of Indonesian Manufacturing	
		Plants	
2021-44	Arlan BRUCAL and Shilpita	Market Entry, Survival, and Exit of Firms	December
(no. 411)	MATHEWS	in the Aftermath of Natural Hazard-related	2021
		Disasters:	
		A Case Study of Indonesian Manufacturing	
		Plants	
2021-43	Quang Hoan TRUONG and	Spillover Effects of Foreign and Domestic	December
(no. 410)	Van Chung DONG	Exporting Firms on Export Decisions of	2021
		Local Manufacturing Firms: Evidence	
		from Viet Nam	
2021-42	Ernawati PASARIBU, Puguh	Spillover Effects of Social and Economic	December
(no. 409)	B. IRAWAN, Tiodora H.	Interactions on COVID-19 Pandemic	2021
	SIAGIAN, Ika Yuni	Vulnerability Across Indonesia's Region	
	WULANSARI, and Robert		
	KURNIAWAN		
2021-41	Samuel NURSAMSU, Wisnu	Education for All? Assessing the Impact of	October
(no. 408)	Harti ADIWIJOYO, and	Socio-economic Disparity on Learning	2021
	Anissa RAHMAWATI	Engagement During the COVID-19	
		Pandemic in Indonesia	

2021-40	Yasuyuki TODO, Keita	Robustness and Resilience of Supply	September
(no. 407)	OIKAWA, Masahito	Chains During the COVID-19 Pandemic:	2021
	AMBASHI, Fukunari	Findings from a Questionnaire Survey on	
	KIMURA, and Shujiro	the Supply Chain Links of Firms in	
	URATA	ASEAN and India	
2021-39	Irlan Adiyatma RUM	Policy Strategies to Strengthen the Travel	September
(no. 406)		and Tourism Sectors from the COVID-19	2021
		Pandemic Shocks: A Computable General	
		Equilibrium Model for the Indonesian	
		Economy	
2021-38	Tadashi ITO	Identifying the Impact of Supply Chain	September
(no. 405)		Disruption Caused by COVID-19 on	2021
		Manufacturing Production in Japan	
2021-37	Gyeong Lyeob CHO, Minsuk	The Global Economic Impact of the	September
(no. 404)	KIM, and Yun Kyung KIM	COVID-19 Pandemic: The Second Wave	2021
		and Policy Implications	
2021-36	VGR Chandran	Regulatory Distance, Margins of Trade,	September
(no. 403)	GOVINDARAJU, Neil	and Regional Integration: The Case of the	2021
	FOSTER-MCGREGOR, and	ASEAN+5	
	Evelyn Shyamala		
	DEVADASON		
2021-35	Norlin KHALID, Muhamad	The Trade Restrictiveness Index and Its	September
(no. 402)	Rias K. V. ZAINUDDIN,	Impact on Trade Performance in Selected	2021
	Tamat SARMIDI, Sufian	East Asian Countries	
	JUSOH, Mohd Helmi ALI,		
	and Faliq RAZAK		
2021-34	Anming ZHANG, Xiaoqian	COVID-19, Air Transportation, and	September
(no. 401)	SUN, Sebastian WANDELT,	International Trade in the ASEAN+5	2021
	Yahua ZHANG, Shiteng XU,	Region	

	and				
	Ronghua SHEN				
2021-33	Xiaowen FU, David A.	Aviation Market Development in the New September			
(no. 400)	HENSHER, Nicole T. T.	Normal Post the COVID-19 Pandemic: An 2021			
	SHEN, and Junbiao SU	Analysis of Air Connectivity and Business			
		Travel			
2021-32	Farhad	COVID-19 and Regional Solutions for August 2021			
(no. 399)	TAGHIZADEH-HESARY,	Mitigating the Risk of Small and			
	Han PHOUMIN, and Ehsan	Medium-sized Enterprise Finance in			
	RASOULINEZHAD	ASEAN Member States			
2021-31	Charan SINGH and Pabitra	Central Banks' Responses to COVID-19 in August 2021			
(no. 398)	Kumar JENA	ASEAN Economies			
2021-30	Wasim AHMAD, Rishman J	ot A Firm-level Analysis of the Impact of the August 2021			
(no. 397)	Kaur CHAHAL, and Shirin	Coronavirus Outbreak in ASEAN			
	RAIS				
2021-29	Lili Yan ING and Junianto	The EU–China Comprehensive Agreement August 2021			
(no. 396)	James LOSARI	on Investment:			
		Lessons Learnt for Indonesia			
2021-28	Jane KELSEY	Reconciling Tax and Trade Rules in the August 2021			
(no. 395)		Digitalised Economy: Challenges for			
		ASEAN and East Asia			
2021-27	Ben SHEPHERD	Effective Rates of Protection in a World August 2021			
(no. 394)		with Non-Tariff Measures and Supply			
		Chains: Evidence from ASEAN			
2021-26	Pavel CHAKRABORTHY	Technical Barriers to Trade and the August 2021			
(no. 393)	and Rahul SINGH	Performance			
		of Indian Exporters			
2021-25	Jennifer CHAN	Domestic Tourism as a Pathway to Revive July 2021			

(no. 392)		the Tourism Industry and Business Post the	
		COVID-19 Pandemic	
2021-24	Sarah Y TONG, Yao LI, and	Exploring Digital Economic Agreements to	July 2021
(no. 391)	Tuan Yuen KONG	Promote Digital Connectivity in ASEAN	
2021-23	Christopher FINDLAY, Hein	Feeling the Pulse of Global Value Chains:	July 2021
(no. 390)	ROELFSEMA, and Niall	Air Cargo and COVID-19	
	VAN DE WOUW		
2021-22	Shigeru KIMURA, IKARII	Impacts of COVID-19 on the Energy	July 2021
(no. 389)	Ryohei, and ENDO Seiya	Demand Situation of East Asia Summit	
		Countries	
2021-21	Lili Yan ING and Grace	East Asian Integration and Its Main	July 2021
(no. 388)	Hadiwidjaja	Challenge:	
		NTMs in Australia, China, India, Japan,	
		Republic of Korea, and New Zealand	
2021-20	Xunpeng SHI, Tsun Se	Economic and Emission Impact of	July 2021
(no. 387)	CHEONG, and Michael	Australia–China Trade Disruption:	
	ZHOU	Implication for Regional Economic	
		Integration	
2021-19	Nobuaki YAMASHITA and	Is the COVID-19 Pandemic Recasting	July 2021
(no. 386)	Kiichiro FUKASAKU	Global Value Chains in East Asia?	
2021-18	Yose Rizal DAMURI et al.	Tracking the Ups and Downs in	July 2021
(no. 385)		Indonesia's Economic Activity During	
		COVID-19 Using Mobility Index:	
		Evidence from Provinces in Java and Bali	
2021-17	Keita OIKAWA, Yasuyuki	The Impact of COVID-19 on Business	June 2021
(no. 384)	TODO, Masahito AMBASHI	, Activities and Supply Chains in the	
	Fukunari KIMURA, and	ASEAN Member States and India	

2021-16	Duc Anh DANG and Vuong	The Effects of SPSs and TBTs on	June 2021
(no. 383)	Anh DANG	Innovation: Evidence from Exporting	
		Firms in Viet Nam	
2021-15	Upalat	The Effect of Non-Tariff Measures on	June 2021
(no. 382)	KORWATANASAKUL and	Global Value Chain Participation	
	Youngmin BAEK		
2021-14	Mitsuya ANDO, Kenta	Potential for India's Entry into Factory	June 2021
(no. 381)	YAMANOUCHI, and	Asia: Some Casual Findings from	
	Fukunari KIMURA	International Trade Data	
2021-13	Donny PASARIBU, Deasy	How Do Sectoral Employment Structures	June 2021
(no. 380)	PANE, and Yudi SUWARNA	Affect Mobility during the COVID-19	
		Pandemic	
2021-12	Stathis POLYZOS, Anestis	COVID-19 Tourism Recovery in the	June 2021
(no. 379)	FOTIADIS, and Aristeidis	ASEAN and East Asia Region:	
	SAMITAS	Asymmetric Patterns and Implications	
2021-11	Sasiwimon Warunsiri	A 'She-session'? The Impact of COVID-19	June 2021
(no. 378)	PAWEENAWAT and	on the Labour Market in Thailand	
	Lusi LIAO		
2021-10	Ayako OBASHI	East Asian Production Networks Amidst	June 2021
(no. 377)		the COVID-19 Shock	
2021-09	Subash SASIDHARAN and	The Role of Digitalisation in Shaping	June 2021
(no. 376)	Ketan REDDY	India's Global Value Chain Participation	
2021-08	Antonio FANELLI	How ASEAN Can Improve Its Response to	May 2021
(no. 375)		the Economic Crisis Generated by the	
		COVID-19 Pandemic:	
		Inputs drawn from a comparative analysis	
		of the ASEAN and EU responses	
2021-07	Hai Anh LA and Riyana	Financial Market Responses to	April 2021

(no. 374)	MIRANTI	Government COVID-19 Pandemic	
		Interventions: Empirical Evidence from	
		South-East and East Asia	
2021-06	Alberto POSSO	Could the COVID-19 Crisis Affect	April 2021
(no. 373)		Remittances and Labour Supply in ASEAN	
		Economies? Macroeconomic Conjectures	
		Based on the SARS Epidemic	
2021-05	Ben SHEPHERD	Facilitating Trade in Pharmaceuticals: A	April 2021
(no. 372)		Response to the COVID-19 Pandemic	
2021-04	Aloysius Gunadi BRATA et al	COVID-19 and Socio-Economic	April 2021
(no. 371)		Inequalities in Indonesia:	
		A Subnational-level Analysis	
2021-03	Archanun KOHPAIBOON and	dThe Effect of the COVID-19 Pandemic on	April 2021
(no. 370)	Juthathip JONGWANICH	Global Production Sharing in East Asia	
2021-02	Anirudh SHINGAL	COVID-19 and Services Trade in	April 2021
(no. 369)		ASEAN+6: Implications and Estimates	
		from Structural Gravity	
2021-01	Tamat SARMIDI, Norlin	The COVID-19 Pandemic, Air Transport	April 2021
(no. 368)	KHALID, Muhamad Rias K.	Perturbation, and Sector Impacts in	
	V. ZAINUDDIN, and Sufian	ASEAN Plus Five: A Multiregional Input-	
	JUSOH	Output Inoperability Analysis	

ERIA discussion papers from the previous years can be found at: http://www.eria.org/publications/category/discussion-papers