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Abstract: A timely and reliable prediction of economic activities is crucial in policymaking, 

especially in the current COVID-19 pandemic situation, which requires real-time decisions. 

However, making frequent predictions is challenging due to the substantial delays in 

releasing aggregate economic data. This study aims to nowcast Indonesia’s economic 

activities during the COVID-19 pandemic using the novel high-frequency Facebook Mobility 

Index as a predictor. Employing mixed-frequency, mixed-data sampling, and benchmark 

least-squares models, we expanded the mobility index and used it to track the growth 

dynamics of the gross regional domestic product of provinces in Java and Bali and performed 

a bottom-up approach to estimate the aggregated economic growth of the provinces 

altogether. Our results suggested that the daily Facebook Mobility Index was a considerably 

reliable predictor for projecting economic activities on time. All models almost consistently 

produced reliable directional predictions. Notably, we found the mixed data sampling-

autoregressive model to be slightly superior to the other models in terms of overall precision 

and directional predictive accuracy across observations. 
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1. Introduction 

Like governments in other parts of the world, the Indonesian government has 

been struggling to contain the impacts of the COVID-19 pandemic. On the one hand, 

the government needs to curb the spread of coronavirus infections by implementing 

either a full lockdown or restriction on social activities, such as large-scale social 

restrictions (Pembatasan Sosial Berskala Besar, or PSBB). On the other hand, it 

needs to maintain livelihoods and stimulate economic recovery by relaxing 

lockdowns or PSBB. To satisfy these conflicting goals, the Indonesian government 

needs to make real-time decisions promptly. If it keeps lockdowns or PSBB for too 

long, businesses will experience greater losses and workers will be left idle or 

unemployed for a longer time. Similarly, hasty economic reopening will result in 

the re-emergence of coronavirus infections and force the government to again 

implement lockdowns or PSBB, which would hurt the economy further. 

Nonetheless, making real-time decisions is challenging due to substantial 

delays in releasing aggregate economic data, such as on gross domestic product 

(GDP) or the balance of payments (BOP). For instance, Statistics Indonesia (Badan 

Pusat Statistik, or BPS) releases the latest GDP data around one-and-a-half months 

after the reference quarter. Bank Indonesia also takes a similar amount of time to 

update the newest BOP figures. When aggregate economic data are unavailable, the 

government relies on disaggregated economic and financial data combined with a 

fair amount of expert judgment. 

This study aims to fill this gap by providing nowcasting of Indonesia’s GDP 

during the pandemic. The application of nowcasting in Indonesia has only been 

done recently and is still limited. For instance, Kurniawan (2014) was one of the 

earliest studies to assess the performance of dynamic factor model (DFM) and 

mixed-data sampling (MIDAS) regressions in nowcasting quarterly GDP. Luciani 

et al. (2015) used Indonesia’s GDP growth data and the DFM model to highlight 

the challenges of nowcasting macroeconomic datasets from emerging markets.  

Building upon Kurniawan’s (2014) work, Tarsidin, Idham, and Rakhman 

(2018) attempted to develop a nowcasting model for quarterly household 

consumption and investment using the DFM model. Unlike other studies, Utari and 

Ilma (2018) only used MIDAS regression to nowcast Indonesia’s quarterly GDP 

with the agricultural product’s monthly export value. 
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Generally, on the one hand, macroeconomists and professional forecasters use 

the DFM model to build a complete nowcasting model by incorporating various 

high-frequency economic datasets issued monthly, weekly, or daily. On the other 

hand, MIDAS regression is used because of its simplicity. Unlike the DFM model 

developed as a system of equations, the MIDAS regression model uses a reduced 

form such that it is more parsimonious.  

For instance, Foroni, Marcellino, and Stevanovic (2020) use MIDAS and 

unrestricted MIDAS (UMIDAS) regression models to improve forecasting 

accuracy during the pandemic. Their new forecasting results suggest that pandemic-

driven economic crises in the United States and Group of Seven countries will last 

longer than initially predicted. 

Sampi and Jooste (2020) also use the MIDAS regression model to improve 

forecasting accuracy. Nevertheless, their approach is different. Rather than using 

the MIDAS regression model to fine-tune forecast accuracy, they propose a novel 

dataset previously unobservable, the Google Mobility Index. After backcasting the 

index with daily pollution and temperature data, they make nowcasting estimates 

of the industrial production growth rates in selected economies in Latin America 

and the Caribbean. 

This study will use the MIDAS regression model to nowcast the Indonesian 

economy, taking advantage of the recently available mobility index from Facebook, 

similar to Sampi and Jooste (2020). It is different in the way that the nowcasting is 

conducted at the regional level. Ideally, the availability of the Facebook Mobility 

Index at the municipal-level in Indonesia (i.e. kabupaten and kota) allows the 

prediction to be conducted at the district level, given data availability. The 

predictions can then be aggregated at the national or sub-national level to serve as 

‘bottom-up’ predictions. 

However, for this study’s purpose, we limit our scope of work to conducting 

nowcasting for Java and Bali’s provincial economies due to the limited availability 

of recent data at the municipal level. The provinces in Java and Bali are also 

amongst the top contributors to the Indonesian economy, making up more than 61% 

in 2019. This study is expected to provide better information for policy and 

decision-making, especially during a crisis, using novel datasets enabled by 

advancements in information technology. 
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2. Literature Review 

2.1. Mobility and the economy during the COVID-19 pandemic 

Human mobility is a potent indicator for measuring economic activities, as 

has been suggested by an array of empirical studies. For instance, Dong et al. (2017) 

found a strong positive relationship between various mobility records and economic 

indicators, such as local commercial revenues and sales, using geo-positioning data. 

Years later, Li et al. (2020) found that traffic flows explained disparities in economic 

activities amongst Chinese provinces. They also confirmed a strong link between 

spatial interactions and regional economic and development indicators like GDP. 

Lastly, Putra and Arini (2020) found a consistent, significantly positive association 

between satellite-sourced night-time light data and the Google Mobility Index, and 

regional GDP across Indonesian provinces. 

Human mobility also has a strong relationship with interaction and socio-

economic development. Pappalardo et al. (2016) observed a positive bidirectional 

relationship between mobility and socio-economic indicators in French 

municipalities using mobile phone data. They found that regions with more diverse 

mobility tend to be more developed. Consequently, more developed municipalities 

are those with highly varying mobility patterns. 

On the downside, human mobility also helps spread contagious diseases like 

COVID-19. In line with that, human mobility has been confirmed in various studies 

to speed up COVID-19 transmission significantly. Oztig and Askin (2020) observed 

a positive relationship between a country’s air passenger traffic and the number of 

COVID-19 patients in 144 countries. They also found that Schengen countries – 

which are more densely populated and have more elderly populations – tend to have 

more COVID-19 cases than other countries.  

Shao, Xie, and Zhu (2021) found that human mobility was positively related 

with the COVID-19 transmission rate in 47 countries during the observed period 

from 22 February to 22 June 2020. A more granular study by Badr et al. (2020) 

confirmed that in 25 United States (US) counties with the highest number of cases 

in April 2020, mobility patterns were significantly related to COVID-19 case 

growth rates.  
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In the hope of curbing COVID-19 transmissions, numerous national 

governments began enacting social mobility measures. Some of them applied a very 

restrictive, complete lockdown policy. Others, like Indonesia, imposed only partial, 

more lenient mobility restrictions. Mobility restrictions, whilst necessary in some 

cases, have been confirmed costly for economies.  

There is a long list of studies examining the negative impact of mobility 

restrictions on economic activities. Amongst them is Bonaccorsi et al. (2020), who 

found that mobility restrictions disproportionately slowed down economic activities 

in the Italian municipalities with lower fiscal capacity and higher income inequality. 

Next, Prawoto et al. (2020) observed a contraction in socio-economic activities in 

Indonesia following the first round of the COVID-19 outbreak in March 2020. 

Limited mobility also disrupted labour market outcomes. Gupta et al. (2020) found 

that social distancing policies heavily caused the declining employment rates in the 

US. 

On a broader scope, Ozili and Arun (2020) reported that the lockdown 

duration and international travel restrictions affected economic activities in Japan, 

the United Kingdom, the US, and South Africa. Sectorally, the enacted lockdown 

policies worldwide were found to have halted economic activity, and more severely 

so for the transport, trade and manufacturing, and services sectors (Song and Zhou, 

2020).  

2.2.  Mobility and weather indicators 

For this study’s purpose, we need to conduct backcasting for the mobility 

index to lengthen the forecasting period. Several indicators can be used for the 

backcasting, particularly weather indicators and air quality. Both indicators served 

as proxies to predict mobility and were used by Sampi and Jooste (2020). Daily 

temperature and air pollution, as measured by fine particulate matter (PM 2.5), were 

expected to partly explain the mobility index’s dynamics as it is commonly believed 

that weather significantly affects people’s preferences for going out. This has been 

supported by a spate of previous studies, such as Shao, Xie, and Zhu (2021), Böcker, 

Dijst, and Faber (2016), and Liu, Susilo, and Karlströmet (2014). Besides, people 

tend to engage in outdoor activities on warm days with comfortable (not too cold, 

not too hot) weather (Cools et al., 2010).  
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Air quality can also be an indicator that signifies the mobility rate. PM 2.5 is 

primarily used in many studies analysing the link between human mobility and 

overall air quality. It is known to be emitted by aeroplanes, diesel motor vehicles, 

and fossil-fuel power plants. Archer et al. (2020) and Zhu et al. (2020) found a 

significant positive association between PM 2.5 concentration and human mobility 

in the US and China. Thus, the greater the fuel combustion in a day, the higher the 

PM 2.5 concentration will be. Likewise, we expect higher mobility on days with 

higher PM 2.5, and vice versa. 

In addition to average temperature and PM 2.5 information, we added rainfall 

intensity into the backcasting model as it could serve as a strong predictor of 

people’s mobility in tropical countries like Indonesia. In general, people refrained 

from going out during rainy days. This is in line with findings in a study by Cools 

et al. (2010). Based on a survey of respondents in a Dutch-speaking area in 

Belgium, Flanders, the study confirmed that heavy rain caused people to limit their 

movements to closer destinations. Particularly in places with high precipitation 

rates and a long history of flooding, like numerous regions across Indonesia, heavy 

rains may prevent people from leaving their homes at all. Roughly, we may expect 

that mobility tends to decrease during sweltering days with highly polluted air 

and/or heavy rain. Conversely, it is natural to believe that mobility will surge on 

relatively cooler days with cleaner air without heavy rain. 

2.3.  Nowcasting method 

According to Castle, Hendry, and Kitov (2013), there are five main 

nowcasting methods. First is the in-filling of missing disaggregates using an 

exponentially weighted moving average (EWMA) or autoregressive-integrated 

moving average (ARIMA) model. The United Kingdom’s Office for National 

Statistics uses this method. Second is MIDAS regression introduced by Ghysels, 

Santa-Clara, and Valkanov (2004) to link low-frequency variables with high-

frequency estimators. The third is the factor model, which has been divided into 

dynamic and static factor models. A variation of the factor model is factors with 

ragged edges, which handle missing observations at the end of the sample. Last is 

the bridge equations, which have better interpretability than the MIDAS and factor 

models. 
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In the case of Indonesia, the application of nowcasting has only been done 

recently and is limited to four studies – Kurniawan (2014), Luciani et al. (2015), 

and Tarsidin, Idham, and Rakhman (2018), and Utari and Ilma (2018) – using DFM 

and MIDAS regression models. Except for Utari and Ilma (2018), these studies use 

the DFM model because they tried to develop an official nowcast model for their 

respective institutions, specifically Kurniawan (2014) and Tarsidin, Idham, and 

Rakhman (2018) for Bank Indonesia, the country’s central bank, and Luciani et al. 

(2015) for the Asian Development Bank (see Doz, Giannone, and Reichlin [2011]). 

The application of the DFM model is common amongst policymakers in the 

US central bank. For instance, the Federal Reserve Bank of Philadelphia uses the 

‘small data’ DFM model developed by Aruoba, Diebold, and Scotti (2009). The 

Federal Reserve Bank of New York uses a ‘big data’ DFM model to produce early 

GDP growth estimates, which are updated as new data are released or data revisions 

are issued (see Bok et al. [2018]). 

On the other hand, Luciani et al. (2015) highlighted a vital characteristic of 

Indonesia’s GDP data. The slopes of Indonesia’s real GDP change drastically 

whenever the country’s statistical office, the BPS, makes a base year revision (see 

Figure 1). Although these changes reflect an improvement in the BPS’s data 

collection methodology, this inconsistency will lead to an erroneous forecast model. 

Treatment is needed, and one possible remedy is backcasting the latest GDP dataset 

using quarter-on-quarter (QoQ) growth rates. However, this treatment requires 

seasonally adjusted QoQ growth rates, which the BPS does not have. As a solution 

for this issue, Luciani et al. (2015) propose using Indonesia’s real GDP growth rates 

because the data fit each other with a small margin of error, despite the change in 

the base year (see Figure 2). 
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Figure 1: Indonesia’s Real Gross Domestic Product at Various Base Years, 

1993–2019 

(Rp billion) 

 

Source: Statistics Indonesia (BPS) and Bank Indonesia. 

 

Figure 2: Indonesia’s Real Gross Domestic Product Growth Rate at Various 

Base Years, 1993–2019 

(%) 

 

Source: Statistics Indonesia (BPS) and Bank Indonesia. 
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Kurniawan (2014) also provides an important note. In his research, 

Kurniawan compares the performance of the DFM and MIDAS regression models. 

He finds no clear evidence that the former is superior compared to the latter. 

Reflecting on this finding, he suggests that a combination of individual DFM and 

MIDAS models might produce a more accurate result. Kurniawan’s conclusion is 

in line with Bai, Ghysels, and Wright (2013). They showed that state-space models 

(DFM models) and MIDAS regressions give similar forecast results. Even though 

DFM models are more accurate in most cases, they are computationally more 

demanding than MIDAS regressions that utilise reduced-form or single equation. 

Taking advantage of the MIDAS regression’s simplicity, some researchers 

have turned to this model during the COVID-19 pandemic. Foroni, Marcellino, and 

Stevanovic (2020), for instance, use MIDAS and unrestricted MIDAS (UMIDAS) 

regression models to improve the accuracy of forecasting crises and recovery during 

the pandemic. Although this model is second-best compared to a nonlinear, time-

varying model capable of capturing the current situation’s specificities and previous 

crises, it requires less time and resources. Moreover, the lessons learned during the 

Great Recession of 2007–2009 can be employed as a pivot to correct forecast errors 

during the pandemic. The crises include similarity in terms of implied demand and 

supply shocks and unprecedented increases in uncertainty. 

Sampi and Jooste (2020) also use a MIDAS regression to improve forecast 

accuracy during the pandemic. However, they take a different approach by 

introducing novel datasets that have only become available recently due to 

advancements in information technology, namely the Google Mobility Index. 

Because Google’s dataset is only available from March 2020, they perform 

backcasting with daily pollution and temperature data until January 2019. Using the 

backcasted values, they conduct a nowcast for the industrial production growth 

rates of countries in Latin America and the Caribbean.  

Sampi and Jooste’s research is inspiring, but their method should be applied 

with caution to Indonesia’s dataset. Luciani et al. (2015) found that Indonesia’s 

GDP growth rate is weakly correlated with its year-on-year (YoY) industrial 

production growth rates at 0.35. In other words, a replication of Sampi and Jooste’s 

research would not produce an optimal result to track the development of GDP in 
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Indonesia. Therefore, it is better to apply this novel dataset directly with GDP or its 

components, as done by Tarsidin, Idham, and Rakhman (2018). 

 

3. Data and Methodology 

3.1. Data 

 We consider using a novel real-time indicator, the Facebook Mobility Index, 

which the Centre for Strategics and International Studies (CSIS) has attempted to 

incorporate into their COVID-19 Dashboard. Since the Mobility Index is only 

available from 1 March, 2020, we need to expand it using several kinds of daily 

weather and climate data as well as air quality indicators. The complete list of series 

used in this study is presented in Table 1. 

 

Table 1: Data Descriptions 

Data Source Frequency Observation 

Gross regional domestic 

product of major 

provinces 

Statistics Indonesia 

(BPS) 

Quarterly Q1 2019–Q4 2020  

Facebook Mobility Index Center for Strategic and 

International Studies 

COVID-19 Dashboard 

Daily 1 March 2020–31 

December 2020 

Daily average 

temperature  

Meteorology, 

Climatology, and 

Geophysical Agency 

(BMKG) 

Daily 1 January 2019–8 31 

December 2020 

Daily particulate matter 

2.5 mm (PM 2.5) 

BMKG and IQAir Daily 1 January 2019–31 

December 2020  

Daily rainfall rate (RR) BMKG Daily 1 January 2019–31 

December 2020 

Source: Compiled by authors. 
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3.1.1. Gross regional domestic product 

 This study employs the MIDAS model with an index of regional real GDP 

(GDPI) changes as the estimand. Transforming the raw, real GRDP into the GRDP 

index is expected to capture the economic dynamics better than the YoY GRDP 

growth. The index utilises Q4 2018 as the base period. Therefore, we equate real 

GRDP in Q4 2018 to 100 and make it the denominator to construct the index value 

as follows: 

𝐺𝐷𝑃𝐼𝑡 =  
𝐺𝑅𝐷𝑃𝑡

𝐺𝑅𝐷𝑃2018
    

 Then, we compute the index changes in each quarter ‘t’, (∆𝐺𝐷𝑃𝐼𝑡), compared 

to Q4 2018 as follows: 

∆𝐺𝐷𝑃𝐼𝑡 = 𝐺𝐷𝑃𝐼𝑡 − 𝐺𝐷𝑃𝐼2018  

 Next, we feed it into the nowcasting model as the predicted indicator. Upon 

estimation, the forecasted index values are re-transformed to their original unit (Rp 

billion) and incorporated into the original series to compute YoY growth. Hence, 

the final nowcast result is presented and discussed in the form of YoY growth. 

3.1.2. Facebook Mobility Index 

The index is constructed by the Center for Strategic and International Studies 

(CSIS) using information available in the Facebook Movement Range data. The 

novel dataset has been made publicly accessible by Facebook to help experts and 

researchers examining how populations respond to social mobility restrictions 

(Facebook, 2021).  

Two metrics in the data sets – change in movement and stay put—were 

employed to construct the mobility index. The index is formulated as follows: 

𝐼𝑛𝑑𝑒𝑥 = (1 − 𝑎) × 𝑏 

Let a stand for the percentage of the population that stays at home during the 

whole day compared to the baseline. Let b be the movement intensity of people 

(Facebook users) in contrast to the baseline period. The baseline period was set to 

February, as social activity limitation began to occur in Indonesia in early March 

2020 before being formally enacted by the government in April 2020. 

We chose the Facebook Movement Range over the Google Mobility Index 

and Apple Mobility Index due to several reasons. First, it is updated daily, making 
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the data more up-to-date and more potent for real-time analysis. Also, the 

information is considered more granular, such that it gives room for a district-level 

analysis in the near future. 

3.1.3. Weather and climate indicators 

Due to the limited availability of Facebook Movement Range data, we utilise 

a set of weather and climate indicators to expand the mobility index backwards. It 

consists of the daily average temperature, PM 2.5, and the daily rainfall intensity 

(rainfall rate). 

The average daily temperature and rainfall intensity series were retrieved 

from the online data platform of the Meteorology, Climatology, and Geophysical 

Agency (BMKG). Data on daily aerial particle concentration (PM 2.5) was obtained 

from IQAir. It indicates aerial particle concentration sized smaller than 2.5 mm, 

generally associated with fossil-fuel combustion by vehicles and electrical power 

plants. All series were recorded by multiple weather stations within each province. 

They were then aggregated into provincial-level information. 

3.2.  Methodology 

 The MIDAS regression model was first introduced by Ghysels, Santa-Clara, 

and Valkanov (2004) as a reduced-form regression technique to process time-series 

datasets at different frequencies. For instance, it can be utilised for regressing 

annual GDP data with monthly industrial production growth or higher frequency 

data like daily freight movement. As a reduced form regression, the MIDAS 

regression can be written as: 

where 𝐿1 𝑚⁄   is the lag operator of the high-frequency independent variable 𝑋𝑡 , 

with m representing the high-frequency data points included in one low-frequency 

data point. For example, when one aims to forecast a quarterly variable using a 

monthly predictor, then m takes the value 3. Lastly, 𝐵(𝐿1 𝑚⁄ ) = Σ𝑗=0
𝑗𝑚𝑎𝑥

𝑏(𝑗)𝐿𝑗 𝑚⁄  is 

a polynomial of length 𝑗𝑚𝑎𝑥 – could be finite or infinite – in the lag operator, and 

𝑌𝑡 = 𝛽0 + 𝛽1(𝑏(0; 𝜃)𝑋𝑡−0 𝑚⁄
(𝑚)

+ 𝑏(1; 𝜃)𝑋𝑡−1 𝑚⁄
(𝑚)

+ ⋯ ) + 𝜀𝑡
(𝑚)

 (1) 

 

𝑌𝑡 = 𝛽0 + 𝛽1𝐵(𝐿1 𝑚⁄ ; 𝜃)𝑋𝑡
(𝑚)

+ 𝜀𝑡
(𝑚)

 (2) 
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𝑌𝑡 is a low-frequency dependent variable.  

 According to Ghysels, Sinko, and Valkanov (2007), the MIDAS regression 

can be extended into a multivariate model 

𝑌𝑡+1 = 𝛣0 + ∑ ∑ 𝛣𝑖𝑗(𝐿1 𝑚𝑖⁄ )

𝐿

𝑗=1

𝐾

𝑖=1

𝑋𝑡
(𝑚𝑖)

+ 𝜀𝑡+1 (3) 

where Y, ε, and X are n-dimensional vector processes, 𝛣0  are n-dimensional 

vectors, and 𝛣𝑖𝑗 are 𝑛 ×  𝑛 matrices of polynomials. Clements and Galvão (2009) 

discussed the implementation of multivariate MIDAS (M-MIDAS). Using 10 real-

time leading indicators, they concluded that M-MIDAS regression triumphs over 

the single indicator MIDAS. 

3.3.  Specification strategy 

This study employs two bi-variate models, namely the Almon polynomial 

distributed lag (Almon PDL) MIDAS – known simply as ‘MIDAS’ – and the least-

squares (LS) model. The MIDAS model and the LS model take both the unlagged 

form and the lagged form with autoregressive (AR) terms of GRDP index changes 

(∆𝐺𝐷𝑃𝐼𝑡−1 ). Therefore, throughout the analysis, we consistently deliver results 

corresponding to four specifications; MIDAS, MIDAS-AR, LS, and LS-AR.  

Our objective is to nowcast a lower-frequency variable, changes in the GRDP 

index, Y, in Q4 2020. In doing so, this study utilises the pseudo-out-of-sample 

approach, meaning that we treat Q4 2020 as a pseudo-out-of-sample observation. 

This means all models are estimated using data from Q1 2019 to Q3 2020 as part 

of training samples to predict the YoY GRDP growth value in Q4 2020. This routine 

is useful to examine how our models would perform in real-world practice 

(Armesto, Engemann, and Owyang, 2010). To be precise, the method mimics the 

actual scenario when the estimands’ actual values are available to forecasters only 

up to time t and the predictors’ values are available up to t+1 to estimate the 

estimands’ values at time t+1.   

First, let us define the MIDAS model as: 

 

𝑌𝑡 = 𝛽0 + ∑ 𝑋𝑡−𝑖
(𝑑)

𝑘−1

𝑖=0

(∑ 𝜏𝑗𝜃𝑗

𝑝

𝑗=0

) + 𝜀𝑡
(𝑑)

 (4) 
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In equation (4), 𝜏 is the lag of the high-frequency variable. The coefficients 

for each high-frequency lag up to k, are governed by p, the dimensional lag 

polynomial with parameters 𝜃 . In our case, p took the value of 3 to maintain 

comparability with other MIDAS-based studies. The d term stands for the high-

frequency observation number within each low-frequency period. Since we employ 

predictors with a daily frequency to predict quarterly variables, d would be between 

90 and 93, representing the number of days in 1 quarter.  

The AR model has been a benchmark specification for forecasting GDP. Also, 

explicitly incorporating the lagged value of the dependent variable has been proven 

to significantly improve prediction power and avoid severe bias, especially in a 

relatively short observation span (see Wilkins [2017]). Therefore, we aim to extend 

the MIDAS model by incorporating the AR term into equation (4).  

Hence, if equation (4) is augmented with an autoregressive term of Yt, we get 

the following MIDAS-AR specification: 

 Where 𝜆  is the autoregressive correlation coefficient explaining the 

relationship between GRDP index changes at time t and its past values. The 

predictor 𝑋𝑡  is lagged up to a particular value of i. The models’ lag length is 

automatically chosen based on the Akaike information criterion and the Schwartz 

information criterion. 

 Our third model is the LS, which is written as follows: 

Similarly, we augment equation (6) with an autoregressive term of 𝑌𝑡. Throughout 

the rest of our study, we coin it the ‘LS-AR’ specification, as formulated in equation 

(7): 

 Unlike MIDAS models that weigh each lagged value 𝑋𝑡 differently, the LS 

models only use a simple aggregation approach relying on the average value of 𝑋𝑡. 

LS models automatically average the mobility index’s daily values for the particular 

𝑌𝑡 = 𝛽0 + 𝜆𝑌𝑡−1 + ∑ 𝑋𝑡−𝑖
(𝑑)

𝑘−1

𝑖=0

(∑ 𝜏𝑗𝜃𝑗

𝑝

𝑗=0

) (1 − 𝜆 ∑ 𝜏𝑗

𝑝

𝑗=0

) + 𝜀𝑡
(𝑑)

 (5) 

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜀𝑡 (6) 

𝑌𝑡 = 𝛽0 + 𝑎𝑌𝑡−1 + 𝛽1𝑋𝑡 + 𝜀𝑡 (7) 
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quarter (q). Because of this limitation, the LS model might generate a less accurate 

result but is still useful for comparison. Hence, this study employs the LS and LS-

AR specifications as the baseline for comparing the results against the MIDAS and 

MIDAS-AR models. 

3.4.  Nowcast approximation 

 Using the models shown in equations (4)–(7), we present the nowcast 

approximations for each specification. Amongst others, the forecast (nowcast) 

approximation has been extensively discussed by Timmermann (2006) and Kim and 

Swanson (2014). According to Andreou, Ghysels, and Kourtellos (2013), using the 

approximate combination of multiple models could improve the nowcast accuracy. 

It also provides an opportunity to address inherent instability within the models, 

mainly caused by structural breaks, as in the case of the COVID-19 pandemic. 

 The method used for making an approximate combination is the ‘forecast 

averaging’ procedure. Instead of assigning equal weights in averaging the nowcast 

result, we use the mean squared-error (MSE) combination method as suggested by 

Stock and Watson (2004). The averaging process can be written as: 

For 𝜆𝑖,𝑡 =  ∑ 𝜎𝑡−ℎ−𝜏𝑡−ℎ
𝜏=𝑇0

 (𝑌𝜏+ℎ
𝑄,ℎ − �̂�𝑖,𝜏+ℎ

𝑄,ℎ )
2
= MSE 

 The weights, 𝜔{𝑖,𝑡}
ℎ  , automatically penalise nowcast values with lower 

accuracies. Simply put, the MSE-combination method improves the overall 

nowcast performance by giving more weight to predicted values with better 

accuracies at any point in time (t). 

3.5.  Expanding the Mobility Index 

 The CSIS’s Facebook Mobility Index suffers from an availability issue, as it 

is only available from 1 March 2020. Consequently, the data need to be backcasted 

to meet the minimum observation requirement for performing the nowcasting 

procedure. In doing so, we utilised daily average temperature data and daily PM 2.5 

data for backcasting the provinces’ mobility index. The backcasting was done back 

to 1 January 2019. 

𝜔{𝑖,𝑡}
ℎ =

(𝜆𝑖,𝑡
−1)

𝑘

∑ (𝜆𝑗,𝑡
−1)

𝑘𝑛
{𝑗=1}

 (8) 
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 Our backcasting procedure follows Sampi and Jooste (2020). The general 

formula used to backcast the data is as follows: 

 

 The formula employs a dynamic backcasting method, as every single back-

casted value was attained based on information available in the subsequent period. 

In equation (9), f stands for the backcasted series, the mobility index. The term 𝑝𝑖 

is proxy ‘i’, normalised and employed to expand the mobility index, whilst 𝜌𝑖 is 

the correlation coefficient between proxy i and the mobility index. Unlike for Sampi 

and Jooste (2020), the number of proxies used to expand the mobility index 

backwards, N, takes the value of 3. N=3 corresponds to three climate and weather 

indicators we utilised to approximate the mobility index for earlier than 1 March 

2020. 

 It is important to note that the resulting expanded mobility index cannot 

perfectly reflect the real dynamics in mobility as it uses predicted values. An ideal 

way would be to use the mobility index’s actual values. That way, the nowcast 

accuracies would likely improve. However, since the data are only available from 

1 March 2020, backcasting the mobility index is a feasible option to proceed with. 

3.6.  Scope 

The main features of the COVID-19 pandemic are its uneven spatial diffusion 

and geographical impacts. In Indonesia, the first COVID-19 case was first detected 

in Greater Jakarta in March, resulting in the first implementation of large-scale 

social restrictions (PSBB) in the capital city on 10 April. Then, East Java followed 

on 28 April and West Java on 6 May. Outside Java, the first PSBB was implemented 

in Makassar, the capital city of South Sulawesi, and Banjarmasin, the capital city of 

South Kalimantan, on 24 April.  

Since COVID-19 allows for human-to-human transmission, the COVID-19 

pandemic hit densely populated places more severely. In Indonesia, the pandemic 

struck Indonesia’s central economic and population nodes much earlier. 

Consequently, during the first round of the large-scale social restriction (PSBB), 

mobility dropped more dramatically in provinces with higher population density 

and contributions to the national economy, as depicted in Figure 3.  

 

𝑓{𝑗−1} =
𝑓𝑗

1 + ∑ 𝜌𝑖 × 𝑝𝑖
𝑁
𝑖=1

 (9) 
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Figure 3: Mobility Index by Province, 10 April 2020 

 

Source: Facebook Mobility Index, processed by CSIS. 

 

The map in Figure 3 suggests that Bali and all provinces in Java responded 

more immediately than others, as marked by the red and orange shades. Also, 

mobility responses in Java provinces and Bali were more uniform than those in 

other regions. It is important to note that despite Sulawesi provinces also exhibiting 

immediate responses, their shares in Indonesia’s economy are not as big as those in 

Java and Bali, making them less preferable for this study. 

Considering this characteristic and the limited data availability, we focused 

our study on provincial-level analysis for the provinces in Java and Bali. This is 

preferable over a more aggregated, national-level analysis since the uneven spread 

of economic nodes across Indonesian regions could lead to biased estimation results. 

In addition, mobility restrictions’ impacts on Java and Bali economies are likely 

associated with their population density. Six provinces in Java are amongst those 

with the highest population density in Indonesia, followed by Bali (Statistics 

Indonesia, 2020). Java and Bali’s regions also make good approximations of the 

national economy since they constitute more than 61% of the economy. The region 

is also relatively homogenous in terms of the economic structure amongst the 

regencies and municipalities within the provinces, in which service and industrial 

activities dominate. This pattern ensures a more consistent relationship between the 

public’s mobility and economic activities. 

Whilst the Facebook Mobility Index is available at the district level, a 

provincial approximation is more feasible when compared to the time-consuming 
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analysis at the municipal level. Some proxies and official statistics, such as GRDP, 

are either not published on time or unavailable for certain time lags at the municipal 

level. Since the Mobility Index is only available from 1 March 2020, backcasting 

the index at the municipal level would be very difficult. 

Conversely, less-populated Indonesian regions with a lower intensity of 

services and industrial activities may have a weaker and less-robust relationship 

between the mobility index and economic productivity. In areas with lower 

purchasing power and less technologically savvy populations, the Facebook 

Mobility Index cannot serve as a reliable measure of movements or economic 

activity. This is due to the much fewer people whose mobilities or activity logs are 

recorded in the Facebook Movement Range Map.  

 

4. Results and Discussion 

4.1. Expanded mobility index 

We begin our analysis by expanding the Facebook Mobility Index using the 

formula presented in equation (9). We use the daily average temperature, daily 

particle concentration in the air (PM 2.5), and daily rainfall intensity (rainfall rate) 

to expand the mobility index. 

The resulting expanded mobility index is presented in Figure 4. The graph’s 

shaded area marks the Facebook Mobility Index’s backcasted values, whilst the 

remaining unshaded area marks the index’s actual values. After the expansion, the 

Facebook Mobility index now contains more data points and a longer observation 

horizon sufficient to proceed with the nowcasting routine. 
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It is easy to see that before Indonesia’s first COVID-19 outbreak in early 

March 2020, the average mobility had been much higher and much closer to zero – 

meaning that there was not much change in people’s mobility compared to the 

baseline period of February 2020.  

It is not until mid-March 2020 that we can spot a steep drop in the mobility 

index as the government started to recommend mobility reductions following the 

confirmation of the country’s first COVID-19 case on 2 March that year. By the 

end of March 2020, we can observe a further fall, as the government began to 

formalise its mobility restriction policy – coined as large-scale social restrictions 

(PSBB) – through Government Regulation No.21/2020. 

From March 2020 onwards, the mobility index was relatively lower compared 

to before. Nonetheless, we can still observe the dynamics of the mobility index after 

the PSBB was enacted. Approaching May–June 2020, mobility rose (although not 

as high as pre-March level) as the Eid Al-Fitr holiday season took place. After June 

2020, there was a gradual increase in mobility as the government enacted a less 

restrictive version of the PSBB, coined as ‘transitional PSBB’, and implemented 

the ‘New Normal’ policy, which allowed workplaces to reopen and religious 

facilities to operate partially starting from 9 June 2020. 
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Figure 4: Expanded Mobility Index 

 

Source: Authors’ calculations (back-casted) and Facebook Mobility Index. 

 

In mid-September, mobility fell again as the government implemented a 

stricter PSBB starting 14 September 2020. This version of the PSBB involved the 

full closure of almost all public spaces, including religious facilities and recreation 

places. Restaurants were only allowed to serve takeaways, whilst all social events 

and any crowds were prohibited. From mid-October onwards, a gradual increase in 
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mobility occurred as the PSBB loosened, before spiking around the Christmas 

holiday. 

4.2. Nowcast results 

We backcasted the Facebook Mobility Index from 29 February 2020 

backwards. Then, we splined it with the actual values from 1 March to 31 December 

2020. This procedure produced the expanded Facebook Mobility Index, spanning 2 

years from 1 January 2019 to 31 December 2020 – sufficiently long to predict GDP 

index changes 1 quarter ahead in Q4 2020. 

Next, we nowcasted each province’s GRDP index changes (∆𝐺𝐷𝑃𝐼𝑡−1) with 

its expanded mobility index as a single predictor using all models (LS, LS-AR, 

MIDAS, and MIDAS-AR). The predicted values of the GRDP index changes were 

then converted into GRDP YoY growth. We also conducted a bottom-up approach 

to predict an aggregated growth prediction for the provinces in Java and Bali. All 

outputs are provided in Table A2 along with the simple means, simple medians, and 

MSE-based combinations. 

In both the index changes and YoY growth forms, it is noticeable that the 

models predicted the actual values within the in-sample observations from Q1 2019 

to Q3 2020 more accurately. The predicted values in Q4 2020 seem to deviate much 

further from the actual ones.  

As expected, our models tend to be more precise in projecting the estimand’s 

actual values before the pandemic-induced crisis started in Q1 2020/Q2 2020. 

Likewise, the prediction errors tend to be higher, and the estimated values tend to 

be explosive during the crisis. This is partly because during either crises or 

recoveries, the estimated parameters’ performance usually deteriorates due to 

anomalous economic relationships amongst the variables (Foroni, Marcellino, and 

Stevanovic, 2020). Aside from the narrow observation horizon, the half-backcasted 

mobility index fed into the nowcasting model might also cause this issue. 

Interestingly, the four models produced reliable predictions on directions, and 

this is particularly true for the MIDAS and MIDAS-AR models as they were much 

less likely to incorrectly predict the precise directions compared to the LS and LS-

AR models. The LS and LS-AR models sometimes even failed to produce the 

correct estimated direction for in-sample observations. In contrast, the MIDAS and 



 22 

MIDAS-AR models almost always accurately predicted the estimand’s direction, 

even for the out-of-sample observations (see Figure 5). 

MIDAS and MIDAS-AR’s downside probably lies in their tendencies to 

produce explosive predictions of the out-of-sample observations. The two models’ 

projections were closer to the actual values for in-sample observations but produced 

much less-accurate projected values for out-sample observations due to their more 

flexible parameters (see Figure 5). 

One can alleviate such shortcomings by computing nowcast combinations. 

By combining the nowcasted values of different models, overestimation and 

underestimation can be reduced. We found that MSE-based, simple mean, and 

simple median combinations pulled the predictions closer to their actual values in 

each province.  

In terms of the overall accuracies, the MIDAS-AR model consistently showed 

significantly lower errors than the other models, as depicted by its MSEs. Broadly, 

we also observed lower MSEs for MIDAS models than their LS counterparts, which 

suggests that incorporating the estimand’s autoregressive term is generally useful 

in improving nowcast precision. This pattern is consistent with previous studies’ 

findings and holds for every province and aggregated analysis of Java and Bali. 

The results from each province’s predictions in Java and Bali can be 

aggregated to see the region’s economic level and growth. The aggregated results 

for Java and Bali seem to be more accurate than those for the analysis of the 

individual provinces, as depicted in the last panel of Figure 5. This applies to the 

out-of-sample projection as well. Although some of the models remained explosive, 

the nowcast combination effectively brought about estimates quite close to the 

actual values. This gives some basis for this ‘bottom-up’ approach for future work 

on predictions of the Indonesian economy using the mobility index at the municipal 

or provincial levels. 
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Figure 5: Real Gross Regional Domestic Product Year-on-Year Growth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors’ calculations. 
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5. Conclusion 

This study attempts to construct a model for nowcasting Indonesia’s 

economic activities during the COVID-19 pandemic using the novel high-

frequency Facebook Mobility Index as a predictor. Employing mixed frequency 

MIDAS and the benchmark LS model, we expanded the mobility index until Q1 

2019 and used it to track the dynamics of real GRDP growth in Indonesian 

provinces in Java and Bali. We also explored options for the models with the 

estimand’s AR term and combined nowcasts across specifications to check the 

effective methods for correcting nowcast errors. 

Our results suggested that the daily Facebook Mobility Index was a 

considerably reliable predictor for projecting economic activities on time, 

considering data availability. In each province, all models almost consistently 

produced accurate predictions of the directions. Notably, we found the MIDAS-AR 

to be slightly superior to the other models in terms of overall precision and 

directional predictive accuracy across observations. 

We also noted significant errors and explosive estimates, especially for the 

out-of-sample observation, Q4 2020. These could originate from the analyses’ 

inevitable limitations, namely the narrow observation window and sparse data 

availability. In the meantime, we resorted to several nowcast combinations to 

alleviate the nowcast errors and pull the estimates closer to the actual values.  

This study also presented a bottom-up approach for forecasting economic 

activities with a greater observation scope by delivering accumulative GRDP 

growth nowcasts of Bali and Java provinces altogether. The nowcast output 

appeared to be reliable despite the given constraints, especially after performing 

nowcast combinations. 

Finally, our study delivers insightful exercises for predicting economic 

activities using non-traditional, recently available mobility data. With the existing 

publication lags of traditional macroeconomic indicators, the high-frequency 

Facebook Mobility Index can be an alternative predictor for nowcast economic 

activities – as measured by GDP – in a timelier manner.  

Another valuable point of this study is the nowcast result for Java and Bali’s 

accumulated GRDP growth. It sheds light on a bottom-up approach for predicting 
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GRDP growth with a more aggregated scope. The approach is rarely used to the 

best of our knowledge, especially in analysing the Indonesian economy. 

Timely and frequent economic activities are utterly crucial in policymaking, 

especially in today’s pandemic situation as, more often than not, efforts to curb the 

spread of contagious diseases like COVID-19 can cost the economy. Hence, a 

reliable and timely prediction of policies’ economic impacts may allow 

policymakers to carefully plan mitigation attempts to minimise adverse outcomes 

that otherwise may be severe if left unanticipated.  

 

6. Discussion for Future Work 

Our study can be extended in several ways. In the future, once the data length 

is sufficient, one might want to use the full version of the mobility index without 

backcasted values. This way, the actual mobility dynamics can be captured. Using 

the full-length actual mobility index is expected to increase the nowcasting models’ 

explanatory power and improve overall nowcast accuracy. 

In the context of COVID-19 containment, it is essential to note that mobility 

dynamics may differ from one area to another. Also, the impacts of mobility 

restrictions on people’s mobility may vary across regions. Each city and 

municipality may react differently to the government’s mobility restriction policy 

due to varying economic and demographical structures. Whenever possible, more 

disaggregated analyses at the city or municipality levels are strongly encouraged to 

produce highly relevant policymaking insights that can be specifically tailored to 

each region’s circumstances. 

It is also possible to improvise on the specification strategy. First, if 

backcasting the mobility index is inevitable, one could experiment on other proxies 

to expand the mobility index. Potential proxies include high-frequency proxies like 

night-time light, ship arrival, plane arrival, and traffic congestion data. Second, one 

can use multivariate MIDAS (M-MIDAS) once a high-frequency economic 

indicator becomes available for the sub-national level in the future. 
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Lastly, the bottom-up nowcast approach can be extended in various ways. 

Future applications could take the form of nowcasting national economic activities 

using provincial data or even city and municipality data, estimating provincial 

economies using city-level or district-level data, or even estimating national 

economies with a granular prediction at district-level economies.  
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Appendix 

Table A1: Correlations between the Mobility Index and Weather Indicators 

Jakarta 

  

Mobility 

Index Avg. Temperature 

PM 

2.5 Rainfall Rate 

Mobility Index 1 
  

  

Avg. Temperature -0.237 1 
 

  

PM 2.5 0.445 0.052 1   

Rainfall Rate -0.320 -0.295 

-

0.429 1 

Banten 

  

Mobility 

Index Avg. Temperature 

PM 

2.5 Rainfall Rate 

Mobility Index 1 
  

  

Avg. Temperature 0.166 1 
 

  

PM 2.5 0.276 0.212 1   

Rainfall Rate -0.159 -0.438 

-

0.373 1 

West Java 

  

Mobility 

Index Avg. Temperature 

PM 

2.5 Rainfall Rate 

Mobility Index 1 
  

  

Avg. Temperature 0.154 1 
 

  

PM 2.5 0.199 0.010 1   

Rainfall Rate -0.206 -0.295 

-

0.209 1 

Central Java 

  

Mobility 

Index Avg. Temperature 

PM 

2.5 Rainfall Rate 

Mobility Index 1 
  

  

Avg. Temperature 0.054 1 
 

  

PM 2.5 0.357 0.010 1   

Rainfall Rate -0.147 -0.178 

-

0.465 1 
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Yogyakarta 

  

Mobility 

Index Avg. Temperature 

PM 

2.5 Rainfall Rate 

Mobility Index 1 
  

  

Avg. Temperature -0.088 1 
 

  

PM 2.5 -0.087 0.030 1   

Rainfall Rate -0.413 -0.016 

-

0.037 1 

East Java 

  

Mobility 

Index Avg. Temperature 

PM 

2.5 Rainfall Rate 

Mobility Index 1 
  

  

Avg. Temperature -0.229 1 
 

  

PM 2.5 -0.167 0.290 1   

Rainfall Rate -0.446 0.285 -0.115 1 

Bali 

  

Mobility 

Index Avg. Temperature 

PM 

2.5 Rainfall Rate 

Mobility Index 1 
  

  

Avg. Temperature -0.179 1 
 

  

PM 2.5 -0.268 0.055 1   

Rainfall Rate -0.310 0.091 

-

0.084 1 

Source: Authors’ calculations. 
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Table A2: Nowcast Results (Real GRDP Year-on-Year Growth) 

Jakarta 

Period Actual LS LS-AR MIDAS MIDAS-AR 
MSE-based 

Combination 
Simple Mean 

Simple 

Median 

2019-Q1 6.15 10.11 10.12 8.30 6.04 6.10 8.64 8.30 

2019-Q2 5.40 7.66 7.67 7.32 5.34 5.38 7.00 7.32 

2019-Q3 5.82 4.79 4.79 4.09 6.11 6.08 4.94 4.79 

2019-Q4 5.91 4.60 4.59 4.24 5.97 5.94 4.85 4.60 

2020-Q1 5.04 -1.13 -1.15 3.04 5.27 5.19 1.47 3.04 

2020-Q2 -8.33 -8.63 -8.66 -10.19 -8.05 -8.07 -8.88 -9.74 

2020-Q3 -3.89 -5.17 -5.13 -2.17 -4.06 -4.05 -4.14 -2.87 

2020-Q4 -2.14 -5.64 -5.62 4.00 7.69 7.39 -3.40 -5.64 

 

Banten 

Period Actual LS LS-AR MIDAS MIDAS-AR 
MSE-based 

Combination 
Simple Mean 

Simple 

Median 

2019-Q1 5.27 8.53 8.15 7.95 7.36 8.00 8.00 8.05 

2019-Q2 5.23 6.42 5.87 6.68 6.62 6.35 6.40 6.52 

2019-Q3 5.05 3.36 3.48 2.76 5.75 3.95 3.84 3.42 

2019-Q4 5.62 2.81 3.80 4.07 6.59 4.36 4.32 3.94 

2020-Q1 3.18 -0.69 1.14 0.52 2.36 0.90 0.83 0.83 

2020-Q2 -7.27 -8.70 -7.64 -8.81 -6.98 -7.92 -8.03 -8.44 

2020-Q3 -5.32 -2.37 -4.75 -2.94 -4.87 -3.88 -3.74 -3.15 

2020-Q4 -3.92 -3.55 -5.26 -7.71 -8.50 -6.14 -4.38 -5.77 
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West Java 

Period Actual LS LS-AR MIDAS MIDAS-AR 
MSE-based 

Combination 
Simple Mean 

Simple 

Median 

2019-Q1 5.39 8.76 7.97 8.69 7.13 7.77 8.14 8.33 

2019-Q2 5.64 4.93 4.31 5.07 4.78 4.75 4.77 4.86 

2019-Q3 5.14 2.93 3.62 3.36 4.14 3.75 3.51 3.49 

2019-Q4 4.12 3.55 4.72 3.32 4.23 4.09 3.95 3.89 

2020-Q1 2.77 -0.69 0.66 -0.39 1.14 0.54 0.17 -0.02 

2020-Q2 -5.91 -5.33 -4.48 -5.53 -5.26 -5.16 -5.15 -5.29 

2020-Q3 -4.01 -1.34 -3.35 -2.18 -3.01 -2.72 -2.47 -2.35 

2020-Q4 -2.39 -2.15 -3.51 1.92 3.25 -2.36 -0.13 -0.55 

 

Central Java 

Period Actual LS LS-AR MIDAS MIDAS-AR 
MSE-based 

Combination 
Simple Mean 

Simple 

Median 

2019-Q1 5.12 7.36 5.87 8.91 6.92 7.09 7.27 7.14 

2019-Q2 5.52 4.65 4.05 5.27 4.71 4.70 4.67 4.68 

2019-Q3 5.63 1.45 2.16 3.89 5.53 4.54 3.26 3.03 

2019-Q4 5.33 4.27 6.26 3.86 5.21 5.08 4.90 4.74 

2020-Q1 2.65 1.16 3.66 -1.04 0.64 0.83 1.09 0.98 

2020-Q2 -5.91 -3.79 -3.54 -5.34 -4.87 -4.67 -4.39 -4.46 

2020-Q3 -3.79 2.04 -0.07 -2.59 -3.97 -2.81 -1.18 -1.27 

2020-Q4 -3.34 0.62 -0.90 -1.48 -9.94 -6.77 -2.93 -1.07 
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Yogyakarta 

Period Actual LS LS-AR MIDAS MIDAS-AR 
MSE-based 

Combination 
Simple Mean 

Simple 

Median 

2019-Q1 7.51 10.18 10.30 10.23 8.38 8.76 9.57 10.21 

2019-Q2 6.77 9.76 9.85 9.16 8.21 8.48 9.09 9.46 

2019-Q3 6.01 3.67 3.75 4.43 5.65 5.31 4.56 4.09 

2019-Q4 6.15 3.00 2.71 2.84 6.22 5.54 4.06 2.92 

2020-Q1 -0.31 -1.09 -1.58 -2.76 -1.03 -1.22 -1.54 -2.08 

2020-Q2 -6.88 -8.91 -9.10 -9.06 -8.17 -8.35 -8.72 -9.00 

2020-Q3 -2.98 -2.78 -2.33 -1.30 -2.42 -2.34 -2.23 -1.81 

2020-Q4 -0.68 -2.87 -2.71 -6.67 1.91 0.65 -1.90 -2.85 

 

East Java 

Period Actual LS LS-AR MIDAS MIDAS-AR 
MSE-based 

Combination 
Simple Mean 

Simple 

Median 

2019-Q1 5.56 7.13 6.32 8.47 7.94 7.73 7.47 7.60 

2019-Q2 5.78 4.56 4.12 6.26 5.68 5.45 5.16 5.30 

2019-Q3 5.33 0.66 1.30 1.41 4.16 2.88 1.88 1.64 

2019-Q4 5.42 3.13 4.97 5.79 4.71 4.77 4.65 4.74 

2020-Q1 2.92 2.60 4.95 0.25 -0.03 0.98 1.93 1.45 

2020-Q2 -5.98 -2.66 -2.54 -6.39 -6.30 -5.41 -4.48 -4.95 

2020-Q3 -3.61 2.14 0.91 0.41 -2.60 -1.07 0.19 0.30 

2020-Q4 -2.64 1.42 0.67 -1.36 0.19 -0.82 2.91 0.01 
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Bali 

Period Actual LS LS-AR MIDAS MIDAS-AR 
MSE-based 

Combination 
Simple Mean 

Simple 

Median 

2019-Q1 5.98 9.31 8.95 10.08 8.63 9.07 9.24 9.13 

2019-Q2 5.64 5.99 5.28 6.79 7.39 6.78 6.36 6.39 

2019-Q3 5.28 2.39 2.37 2.99 5.40 4.08 3.29 2.69 

2019-Q4 5.51 1.89 2.55 2.95 6.12 4.41 3.38 2.75 

2020-Q1 -1.20 -1.58 -0.18 -4.84 -2.92 -2.76 -2.39 -2.39 

2020-Q2 -11.06 -12.97 -11.64 -12.11 -11.87 -12.03 -12.15 -12.17 

2020-Q3 -12.32 -7.85 -9.28 -10.40 -11.56 -10.53 -9.79 -9.39 

2020-Q4 -12.21 -7.23 -9.04 -10.22 -8.59 -8.82 -8.77 -8.61 

 

Java and Bali 

Period Actual LS LS-AR MIDAS MIDAS-AR 
MSE-based 

Combination 
Simple Mean 

Simple 

Median 

2019-Q1 5.61 8.79 8.20 9.05 7.45 7.75 8.34 8.42 

2019-Q2 5.60 6.04 5.62 6.39 5.82 5.73 5.95 6.09 

2019-Q3 5.42 2.68 3.08 3.36 5.01 4.33 3.56 3.31 

2019-Q4 5.04 3.43 4.36 3.76 5.24 4.84 4.25 3.93 

2020-Q1 3.20 -0.21 0.99 -0.88 0.60 0.58 0.13 0.14 

2020-Q2 -6.61 -6.79 -6.34 -7.72 -7.10 -6.96 -6.98 -7.26 

2020-Q3 -4.03 -2.03 -3.22 -2.90 -4.37 -3.74 -3.14 -2.80 

2020-Q4 -2.69 -2.56 -3.50 -1.68 -0.33 -1.85 -2.04 -2.74 

 

Source: Authors’ calculations. 
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Table A3: Nowcast Results (Changes in GRDP Index, Q4 2018=0) and Nowcast Evaluation 

Jakarta 

Period Actual LS LS-AR MIDAS MIDAS-AR MSE-based Combination Simple Mean 
Simple 

Median 

2018-Q1 -5.52 -5.60 -5.60 -5.60 -5.60 -5.60 -5.60 -5.60 

2018-Q2 -3.50 -3.51 -3.51 -3.51 -3.51 -3.51 -3.51 -3.51 

2018-Q3 -0.61 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 

2018-Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2019-Q1 0.28 3.95 3.96 2.24 0.11 0.16 2.56 3.09 

2019-Q2 1.72 3.89 3.89 3.56 1.65 1.68 3.25 3.72 

2019-Q3 5.17 4.19 4.19 3.49 5.51 5.47 4.34 4.19 

2019-Q4 5.91 4.60 4.59 4.24 5.97 5.94 4.85 4.59 

2020-Q1 5.34 2.78 2.76 5.34 5.39 5.37 4.07 4.06 

2020-Q2 -6.76 -5.08 -5.10 -7.00 -6.53 -6.53 -5.93 -5.82 

2020-Q3 1.09 -1.20 -1.16 1.25 1.22 1.20 0.03 0.03 

2020-Q4 3.65 -1.30 -1.29 -6.38 14.11 13.77 1.29 -1.30 

MSE - 0.000509 0.000509 0.000509 0.000187 0.000128 0.000232 0.000536 

MAE   0.024564 0.024555 0.022103 0.01426 0.013401 0.014102 0.019247 

R-squared - 0.535 0.691 0.886 0.897       

Adj. R-squared - 0.458 0.537 0.886 0.896       
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Banten 

Period Actual LS LS-AR MIDAS MIDAS-AR MSE-based Combination Simple Mean Simple Median 

2018-Q1 -5.48 -5.48 -5.48 -5.48 -5.48 -5.48 -5.48 -5.48 

2018-Q2 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 

2018-Q3 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 

2018-Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2019-Q1 -0.51 2.58 2.22 2.03 1.47 2.07 2.07 2.12 

2019-Q2 1.44 2.59 2.06 2.83 2.77 2.52 2.56 2.68 

2019-Q3 4.04 2.36 2.49 1.77 4.73 2.95 2.84 2.42 

2019-Q4 5.62 2.81 3.80 4.07 6.59 4.36 4.32 3.94 

2020-Q1 2.66 1.87 3.39 2.56 3.86 2.99 2.92 2.98 

2020-Q2 -5.94 -6.33 -5.74 -6.23 -4.40 -5.61 -5.67 -5.98 

2020-Q3 -1.49 -0.06 -2.38 -1.22 -0.37 -1.05 -1.01 -0.80 

2020-Q4 1.47 -0.83 -1.67 -3.96 -2.47 -2.05 -0.25 -1.25 

MSE - 0.000347 0.000212 0.000229 0.000174 0.000170 0.000180 0.000273 

MAE   0.01704 0.014582 0.013595 0.015972 0.010995 0.011165 0.013675 

R-squared - 0.729638 0.835 0.821 0.832       

Adj. R-squared - 0.676 0.752 0.821 0.818       
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West Java 

Period  Actual LS LS-AR MIDAS MIDAS-AR MSE-based Combination Simple Mean Simple Median 

2018-Q1 -4.74 -4.74 -4.74 -4.74 -4.74 -4.74 -4.74 -4.74 

2018-Q2 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32 

2018-Q3 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 

2018-Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2019-Q1 0.40 3.60 2.85 3.54 2.05 2.67 3.01 3.20 

2019-Q2 4.25 3.55 2.93 3.68 3.40 3.37 3.39 3.47 

2019-Q3 5.65 3.43 4.12 3.86 4.64 4.25 4.01 3.99 

2019-Q4 4.12 3.55 4.72 3.32 4.23 4.09 3.95 3.89 

2020-Q1 3.18 2.88 3.53 3.14 3.22 3.22 3.19 3.18 

2020-Q2 -1.91 -1.97 -1.68 -2.06 -2.04 -1.96 -1.94 -2.00 

2020-Q3 1.42 2.05 0.64 1.60 1.49 1.41 1.45 1.55 

2020-Q4 1.64 1.32 1.04 5.31 7.62 1.64 3.82 3.32 

MSE - 0.000236 0.000202 0.000161 0.000065 0.000245 0.000188 0.000176 

MAE   0.009993 0.009818 0.012926 0.012316 0.010132 0.009423 0.00922 

R-squared - 0.598 0.726 0.656 0.837       

Adj. R-squared - 0.518 0.590 0.656 0.805       
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Central Java 

Period  Actual LS LS-AR MIDAS MIDAS-AR MSE-based Combination Simple Mean Simple Median 

2018-Q1 -3.21 -3.21 -3.21 -3.21 -3.21 -3.21 -3.21 -3.21 

2018-Q2 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 

2018-Q3 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 

2018-Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2019-Q1 1.75 3.92 2.48 5.42 3.49 3.66 3.83 3.70 

2019-Q2 5.25 4.39 3.79 5.01 4.45 4.44 4.41 4.42 

2019-Q3 7.86 3.60 4.32 6.09 7.77 6.75 5.44 5.21 

2019-Q4 5.33 4.27 6.26 3.86 5.21 5.08 4.90 4.74 

2020-Q1 4.44 5.13 6.22 4.32 4.14 4.51 4.95 4.72 

2020-Q2 -0.97 0.43 0.11 -0.60 -0.63 -0.44 -0.17 -0.24 

2020-Q3 3.77 5.71 4.25 3.35 3.49 3.75 4.20 3.87 

2020-Q4 1.81 4.91 5.30 2.32 -5.25 -2.03 1.82 3.62 

MSE - 0.000442 0.000294 0.000274 0.000052 0.000259 0.000152 0.000198 

MAE   0.019357 0.016851 0.014738 0.013419 0.010686 0.009397 0.011185 

R-squared - 0.358 0.573 0.602 0.847       

Adj. R-squared - 0.230 0.359 0.602 0.816       
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Yogyakarta 

Period  Actual LS LS-AR MIDAS MIDAS-AR MSE-based Combination Simple Mean Simple Median 

2018-Q1 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 -6.51 

2018-Q2 -5.94 -5.94 -5.94 -5.94 -5.94 -5.94 -5.94 -5.94 

2018-Q3 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 

2018-Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2019-Q1 0.50 3.00 3.11 3.05 1.32 1.68 2.62 3.03 

2019-Q2 0.43 3.24 3.32 2.67 1.78 2.03 2.75 2.96 

2019-Q3 5.32 2.99 3.07 3.75 4.95 4.62 3.69 3.41 

2019-Q4 6.15 3.00 2.71 2.84 6.22 5.54 3.69 2.92 

2020-Q1 0.19 1.88 1.49 0.20 0.28 0.44 0.96 0.89 

2020-Q2 -6.48 -5.96 -6.08 -6.63 -6.54 -6.49 -6.30 -6.31 

2020-Q3 2.17 0.13 0.67 2.40 2.41 2.17 1.40 1.53 

2020-Q4 5.43 0.05 -0.08 -4.02 8.25 6.22 19.62 -0.01 

MSE - 0.000526 0.000517 0.000357 0.000039 0.000450 0.002765 0.000717 

MAE   0.025526 0.024886 0.024378 0.100109 0.080349 0.030552 0.021422 

R-squared - 0.483 0.650 0.758 0.870       

Adj. R-squared - 0.396 0.475 0.758 0.849       
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East Java 

Period  Actual LS LS-AR MIDAS MIDAS-AR MSE-based Combination Simple Mean Simple Median 

2018-Q1 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 

2018-Q2 -1.78 -1.78 -1.78 -1.78 -1.78 -1.78 -1.78 -1.78 

2018-Q3 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 

2018-Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2019-Q1 0.28 1.77 1.00 3.04 2.54 2.34 2.09 2.16 

2019-Q2 3.90 2.70 2.27 4.37 3.80 3.58 3.29 3.25 

2019-Q3 7.50 2.72 3.38 3.49 6.30 4.99 3.97 3.44 

2019-Q4 5.42 3.13 4.97 5.79 4.71 4.77 4.65 4.84 

2020-Q1 3.21 4.43 6.00 3.30 2.51 3.34 4.06 3.86 

2020-Q2 -2.31 -0.03 -0.33 -2.29 -2.74 -2.03 -1.35 -1.31 

2020-Q3 3.61 4.92 4.32 3.91 3.54 3.86 4.17 4.11 

2020-Q4 2.64 4.60 5.68 4.34 4.91 3.91 7.70 5.14 

MSE - 0.000573 0.000465 0.000345 0.000111 0.000160 0.000553 0.000358 

MAE   0.020655 0.019294 0.036001 0.013784 0.009346 0.017689 0.014773 

R-squared - 0.303 0.377 0.616 0.786       

Adj. R-squared - 0.187 0.127 0.616 0.743       
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Bali 

Period  Actual LS LS-AR MIDAS MIDAS-AR MSE-based Combination Simple Mean Simple Median 

2018-Q1 -7.01 -7.01 -7.01 -7.01 -7.01 -7.01 -7.01 -7.01 

2018-Q2 -3.91 -3.91 -3.91 -3.91 -3.91 -3.91 -3.91 -3.91 

2018-Q3 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 

2018-Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2019-Q1 -1.45 1.65 1.31 2.36 1.02 1.42 1.59 1.48 

2019-Q2 1.51 1.85 1.17 2.62 3.19 2.61 2.21 2.23 

2019-Q3 4.66 1.79 1.77 2.38 4.79 3.47 2.68 2.09 

2019-Q4 5.51 1.89 2.55 2.95 6.12 4.41 3.38 2.75 

2020-Q1 -2.63 0.04 1.13 -2.59 -1.93 -1.38 -0.84 -0.95 

2020-Q2 -9.71 -11.36 -10.61 -9.81 -9.06 -9.73 -10.21 -10.21 

2020-Q3 -8.23 -6.20 -7.67 -8.26 -7.33 -7.43 -7.37 -7.50 

2020-Q4 -7.37 -5.48 -6.72 -7.57 -2.99 -4.80 -5.69 -6.10 

MSE - 0.000644 0.000573 0.000393 0.000158 0.000261 0.000315 0.000357 

MAE   0.022729 0.018528 0.01265 0.014404 0.013634 0.01585 0.016464 

R-squared - 0.786 0.809 0.869 0.948       

Adj. R-squared - 0.743 0.714 0.869 0.938       

 

Source: Authors’ calculations.
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