Chapter **2**

Hydrogen Demand Potential (Phase 2)

December 2020

This chapter should be cited as

ERIA (2020), 'Hydrogen Demand Potential (Phase 2)', in Kimura, S., I. Kutani, O. Ikeda, and R. Chihiro (eds.), *Demand and Supply Potential of Hydrogen Energy in East Asia – Phase 2.* ERIA Research Project Report FY2020 no. 16, Jakarta: ERIA, pp.22-51.

Chapter 2

Hydrogen Demand Potential (Phase 2)

Future hydrogen demand potential is difficult to estimate due to many uncertainties, including promotion policies. In the phase 1 study in FY2018, based on ERIA's energy outlook, the working group (WG) created assumptions and scenarios to estimate the hydrogen demand potential. In this phase 2, we conducted a hearing on hydrogen power generation amongst experts from Mitsubishi Hitachi Power Systems and on fuel cell vehicles (FCVs) from Toyota Motor Corporation to revise the scenarios.

First, we reviewed the assumptions and scenarios for the calculation of the hydrogen demand potential in phase 1. Next, we re-estimated the hydrogen demand potential based on the revised assumptions and scenarios and compared it with that of the phase 1 study.

1. Review of Hydrogen Demand Potential in Phase 1

This section reviews the hydrogen demand potential in phase 1.

1.1. Basic assumptions (Phase 1)

Table 2.1 shows the basic assumptions of the phase 1 study, which were also applied to phase 2.

Table 2.1: Basic Assumptions for Estimating Hydrogen Demand Potential (Phase 1)

The national hydrogen pipeline, as well as refuelling stations, will only be partially established in 2040.

Hydrogen demand for chemicals and hydrogen carriers, e.g. ammonia or methanol, is excluded.^a Hydrogen utilisation technologies to be fully commercialised in 2040:

- Utility scale gas turbine fuelled by a mixture of hydrogen and natural gas
- Commercial scale boiler fuelled by a mixture of hydrogen and natural gas
- Passenger fuel cell vehicle
- Fuel cell bus
- Fuel cell train

Technologies that need to be developed by 2040:

- Utility scale fuel cell
- Heavy-duty fuel cell vehicle
- Fuel cell ship

Technically available, but international and domestic refuelling infrastructures will only be partially established in 2040.

Hydrogen demand for stationary fuel cell is not included in this study because we assumed that hydrogen for stationary fuel cell would be produced from on-site natural gas reforming, which can be categorised as natural gas demand.

^a Currently, most ammonia production is for nitrogen fertiliser. If ammonia were to be used for energy, its demand would be one or two times greater than its current level, thus affecting its global supply/demand balance (IEEJ, 2015).

Source: ERIA (2018).

1.2. Other assumptions and conversion factors (Phase 1)

Table 2.2 shows the assumptions and conversion factors used in the phase 1 study, which were applied to phase 2.

Carbon content	Coal: 25.8 kg-C/GJ	Source:
	(=3.961 tonne-CO₂/toe-input)	IEA (2018)
	Natural gas: 15.3 kg-C/GJ	
	(=2.349 tonne-CO ₂ /toe-input)	
	Gasoline: 18.9 kg-C/GJ	
	$(=2.902 \text{ tonne-CO}_2/\text{toe})$	
	(=2.269 tonne-CO ₂ /KL)	
Net calorific value	Other bituminous coal	Source:
	(Australian export coal)	IEA, World Energy Balances
	0.6138 toe/tonne	2018 database
H2 specification	Gas density: 0.0835 kg/m ³	Source:
	NCV: 10,780 kJ/m ³	Iwatani Corporation
	= 2,575 kcal/m ³	
	= 30,834 kcal/kg	
	= 3,884 m³/toe	
Thermal efficiency	Coal: 55%	Source:
(Electricity generation)	Natural gas: 63%	METI–ANRE (2017)
	H ₂ : 63%	
Conversion factor	1 GJ = 0.02388 toe	-
	1 cal = 4.187 J	
	1 Gcal = 0.1 toe	
	1 MWh = 0.086 toe	
	1 MMBtu = 0.0252 toe	

Table 2.2: Other Assumptions and Conversion Factors (Phase 1)

ANRE = Agency for Natural Resources and Energy; IEA = International Energy Agency; METI = Ministry of Economy, Trade, and Industry, Japan. Source: ERIA (2018).

1.3. Summary of scenarios (Phase 1)

Table 2.3 summarises the scenarios to calculate hydrogen demand potential in the phase 1 study.

Sector	Fuel		Scenario 1	Scenario 2	Scenario 3
		20% of new coal-fired	H2 concentration	n of mixed fuel	·
	Coal	electricity generation will be converted to natural gas and			
		H2 mixed fuel–fired			
Electricity		generation			
generation		20% of new natural gas–fired			
	Natural	electricity generation will be	H2: 10%	H2: 20%	H2: 30%
	gas	converted to natural gas and	Natural gas:	Natural gas:	Natural gas:
	0	H2 mixed fuel-fired	90%	80%	70%
		generation			
		20% of natural gas			
Industry	Natural	consumption for industrial			
	gas	purposes will be replaced by			
		natural gas and H2 mixed fuel	Shara of U2/gas	ling for passange	
			OECD	oline for passenge	OECD
	Gasoline		H2: 2.0%	H2: 10%	H2: 20%
		Passenger fuel cell vehicle:	Gasoline: 98%	Gasoline: 90%	Gasoline:
		Gasoline demand will be	Non-OECD	Non-OECD	80%
		converted to H2	H2: 1.0%	H2: 5%	Non-OECD
			Gasoline: 99%	Gasoline: 95%	H2: 10%
			Gusonne. 5570	Gusonne. 5570	Gasoline:
					90%
			Share of H ₂ /dies		
			Japan	Japan	Japan
Transport			H ₂ : 0.05%	H ₂ : 0.1%	H ₂ : 0.2%
		Fuel cell buck	Gasoline:	Gasoline:	Gasoline:
	Diesel	Fuel cell bus: Diesel demand will be	99.95%	99.9%	99.8%
	Diesei	converted to H2	Other	Other	Other
			countries	countries	countries
			H2: 0.025%	H2: 0.05%	H2: 0.1%
			Gasoline:	Gasoline:	Gasoline:
			99.975%	99.95%	99.9%
		Fuel cell train:	Share of H ₂ /dies	el for rail transpor	t
	Diesel	Diesel consumption for rail	H2: 5%	H2: 10%	H2: 20%
	Dieser	transport will be converted to	Diesel: 95%	Diesel: 90%	Diesel: 80%
		H2			

Table 2.3: Summary of Scenarios (Phase 1)

OECD = Organisation for Economic Co-operation and Development. Source: ERIA (2018).

2. Hydrogen Demand Potential (Phase 2)

This section re-analyses the hydrogen demand potential. The phase 2 study revised the scenarios for calculating hydrogen demand potential; more precisely, the study introduced a new idea to classify countries. Basic assumptions, other assumptions, and conversion factors in the phase 1 study were applied to phase 2.

2.1. Classification of East Asia Summit countries

Future hydrogen demand in a country is likely to be greatly affected by the balance between the hydrogen supply cost and the income level of a country. For instance, a resource-rich country could enjoy cheap hydrogen price whilst a resource-scarce country will accept a higher price that reflects the additional cost of import. In terms of income level, a high-income country can afford to pay for a higher price in exchange for environmental benefits whilst a low-income country cannot. In this way, the balance between the hydrogen supply price and the acceptable energy price range – in other words, the economic competitiveness or affordability of hydrogen – differs from country to country. And these facts would greatly affect the magnitude of market penetration of hydrogen in the future. Therefore, this study categorised the East Asia Summit (EAS) countries, excluding the United States (US), in two axes and four quadrants (Table 2.4).

and d :y.
d
d
;y.
k

Table 2.4: Classification of EAS Countries, excluding the United States

Source: Author.

2.2. Summary of Revised Scenarios (Phase 2)

Table 2.5 shows the revised assumptions and scenarios for calculating the hydrogen demand potential. The conversion ratio from conventional energy to hydrogen differs depending on the quadrant. Each quadrant has one conversion ratio to avoid evaluation complexity.

Table 2.5: Assumptions and Scenarios for Calculating Hydrogen Demand Potential (Phase 2)

Quadrant A

Sector	Assumption	Conversion Ratio
Electricity	Full-scale hydrogen use will begin in 2030 (Assume	The ratio of conversion to
generation	that 10 years will be required to build a large-scale	hydrogen and natural gas
	hydrogen production plant, domestic supply	mixed fuel or pure
	infrastructure, and hydrogen-fired CCGT.)	hydrogen.
	Hydrogen will be supplied to the power plant	
	through newly constructed hydrogen pipelines.	50%
	Existing natural gas power generation (TWh) as of	
	2030 will be partially converted to the 30%	
	hydrogen and 70% natural gas mixed fuel by	
	replacing the combustors.	
	New natural gas power generation (TWh) after	
	2030 will be partially converted to the 100%	
	hydrogen fuel.	
Transport	Assume a certain share of the zero-emission	The ratio of ZEV;
	vehicle (ZEV) in the registered passenger cars in	
	2040.	50%
	Fuel cell vehicle (FCV) share in ZEV: 20%	

CCGT = combined cycle gas turbine.

Quadrant B

Sector	Assumption	Conversion Ratio
Electricity	Full-scale hydrogen use will begin in 2030	The ratio of conversion to
generation	(Assume that 10 years will be required to build a	hydrogen and natural gas
(Existing	large-scale hydrogen production plant, domestic	mixed fuel or pure
generation)	supply infrastructure, and hydrogen-fired CCGT.)	hydrogen
	Japan, the Republic of Korea, Malaysia (Peninsula),	
	Singapore, and Thailand are assumed to construct	
	hydrogen import terminals adjacent to liquefied	
	natural gas (LNG) import terminals for power	
	generation.	
	Other than Singapore, existing gas pipelines will be	
	used to distribute hydrogen in a country.	
	If gas power plants are connected to the same gas	
	pipeline network, they will be converted to	
	hydrogen at once	
	Existing natural gas power generation (TWh) as of	
	2030 will be partially converted to the 30%	
	hydrogen and 70% natural gas mixed fuel by	
	replacing the combustors.	
	Malaysia (Peninsula)	
	Imported hydrogen.	50%
	Thailand	
	Gas power plants connected to LNG import	50%
	terminals will be converted.	
	The gas power plants in the following two areas are	
	not subject to conversion:	
	– The south-eastern area that receives natural gas	
	from the JDA with Malaysia,	
	– The north-western area that natural gas is	
	imported from Myanmar.	
	China	
	China will have a mix of domestic fossil-fuel	50%
	reformed hydrogen and imported hydrogen.	
	Japan	
	Imported hydrogen	50%
	Republic of Korea	
	The KOGAS high-pressure gas pipeline connected to	100%
	the gas-fired plants is looped.	
	Singapore	
	The country is small. It is assumed that a new	100%
	hydrogen pipeline will be constructed. The number	

	of gas-fired plants may be very small.						
Electricity	New natural gas power generation (TWh) after						
generation	2030 will be partially converted to the 100%						
(New	hydrogen fuel.						
generation)	Japan, the Republic of Korea Singapore, and						
	Thailand are assumed to construct new 100%						
	hydrogen thermal power adjacent to the hydrogen						
	import terminals, which will not be connected to						
	the existing natural gas pipelines.						
	China will have a mix of domestic fossil fuel-	China will have a mix of domestic fossil fuel-					
	reformed hydrogen and imported hydrogen.						
	Malaysia (Peninsula)						
	Thailand	50%					
	China						
	Japan						
	Republic of Korea						
	Singapore						
	The number of gas-fired plants may be very small.	100%					
Transport	Assume a certain share of the zero-emission vehicle	The ratio of ZEV					
	(ZEV) in the registered passenger cars in 2040.						
	FCV share in ZEV: 10%	30%					

CCGT = combined cycle gas turbine, JDA = joint development area of offshore hydrocarbon field, LNG = liquefied natural gas.

Quadrant C

Sector	Assumption	Conversion Ratio	
Electricity	Full-scale hydrogen use will begin in 2040 (assume	The ratio of conversion to	
generation	it will take 20 years to improve income levels)	mixed fuel	
	Hydrogen is supplied to the power plant through		
	newly constructed hydrogen pipelines.		
	Existing natural gas-fired electricity generation		
	(TWh) as of 2030 will be partially converted to the	30%	
	30% hydrogen and 70% natural gas-mixed fuel by		
	replacing the combustors except for the Lao PDR		
	that has no plan of introducing natural gas-fired		
	plant.		
	A new 100% hydrogen-fired plant will be operated		
	in 2040 except for the Lao PDR. The generation One 200 MW plant		
	capacity is assumed to be 200 MW.		
Transport	Assume a certain share of the zero-emission vehicle The ratio of ZEV		
	(ZEV) in the registered passenger cars in 2040.		
	FCV share in ZEV: 10%	30%	

Quadrant D

Sector	Assumption	Conversion Ratio				
Electricity	Full-scale hydrogen use will begin in 2040 (Assume					
generation	it will take 20 years to improve income levels).					
	As of 2040, a pilot project or first plant will be					
	introduced.					
	Assume that a hydrogen import terminal will be					
	constructed adjacent to the liquefied natural gas					
	(LNG) terminal that is expected to be developed in					
	the future. Cambodia will also consider importing					
	hydrogen from the Lao PDR through pipelines.					
(Existing	Existing natural gas power generation (TWh) as of					
generation)	2030 will be partially converted to the 30%					
	hydrogen and 70% natural gas mixed fuel by					
	replacing the combustors.					
	Viet Nam	30%				
	Cambodia					
	Philippines	100%				
	The number of gas-fired plants may be very small.					
(New	No new 100% hydrogen-fired plant will be operated					
generation)	in 2040.	_				
Transport	Assume a certain share of the zero-emission vehicle	The ratio of ZEV				
	(ZEV) in the registered passenger cars in 2040.					
	FCV share in ZEV: 5%	30%				

Source: Author.

Table 2.6, Figure 2.1, and Figure 2.2 show the major differences of scenarios between phases 1 and 2.

In the electricity generation sector, coal electricity generation is excluded because the gradual phase-out of the coal electricity generation scenario was already included in the ERIA energy outlook 2019. The conversion ratio from natural gas electricity generation to hydrogen is increased. In phase 1, only new power generation was the subject of fuel switch to hydrogen but, in phase 2, existing power generation was also targeted to use hydrogen. In addition, after 2030, we assumed that pure hydrogen thermal electricity generation would start operation considering recent developments in technology.

Meanwhile, hydrogen consumption in the industry sector is excluded. We thought it would be premature to build pure hydrogen pipeline infrastructures for industrial boilers before 2040. This is because of a smaller demand per plant compared to electricity generation, which makes feasibility of a pure hydrogen pipeline low. In the transport sector, diesel was excluded because calculated hydrogen demand to substitute for diesel engine was very small in phase 1. The transport sector's scenarios in phase 2 are not progressive compared to phase 1.

Sector	Item	Phase 1	Phase 2
	Subject of	Natural gas	Natural gas
	fuel switch	Coal	
Electricity		Fuel for electricity generation:	Generated electricity:
generation	Scenario	The hydrogen concentration	The conversion ratio of
generation	(Factors of	in natural gas and hydrogen	generated electricity to
	change)	mixed fuel	hydrogen/natural gas mixed
			fuel or pure hydrogen
Inductor	Subject of	Natural gas	Excluded
Industry fuel switch			
		Passenger fuel cell vehicle	Passenger fuel cell vehicle
	Mode	(gasoline)	(gasoline)
Transport	woue	Fuel cell bus (diesel)	
Transport		Fuel cell train (diesel)	
	Scenario	Conversion ratio of	The ratio of zero-emission
	Scenario	gasoline/diesel	vehicle

Table 2.6: Major Differences of Scenarios between Phases 1 and 2

Source: Author.

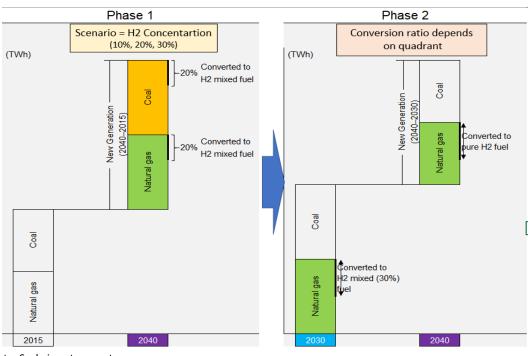
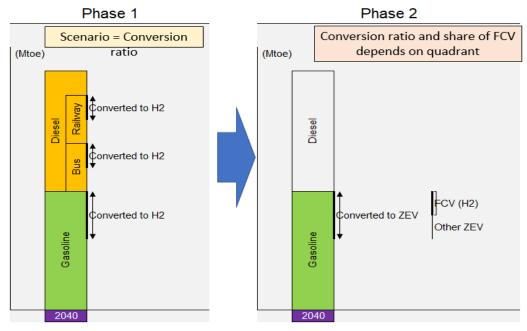



Figure 2.1: Hydrogen Demand Calculation Method of the Electricity Generation Sector

Note: Scale is not accurate. Source: Author.

Figure 2.2: Hydrogen Demand Calculation Method of the Transport Sector

FCV = fuel cell vehicle, ZEV = zero-emission vehicle. Note: Scale is not accurate. Source: Author.

2.3. Hydrogen demand potential by sector and by country (Phase 2)

2.3.1. Electricity generation sector

Figure 2.3 shows the hydrogen demand potential of the electricity generation sector of the EAS in 2040. In the phase 2 study, hydrogen demand potential will reach 101 Mtoe. Compared to phase 1, hydrogen demand potential will increase 80 Mtoe from scenario 1, 59 Mtoe from scenario 2, and 38 Mtoe from scenario 3, despite coal-fired electricity generation being excluded in phase 2.

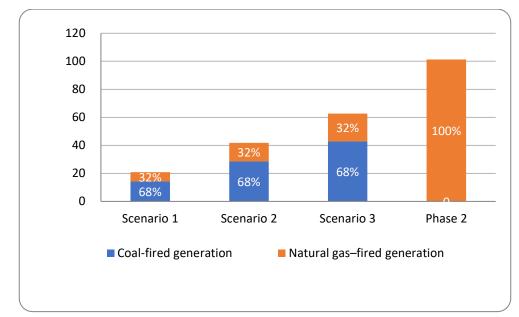


Figure 2.3: Hydrogen Demand Potential of the Electricity Generation Sector in the EAS in 2040

Source: Author.

Table 2.7 compares the scenarios of the electricity generation sector between the two study phases.

Item	Phase 1	Phase 2	
Converted electricity generation	New	Existing and new	
(Natural gas)	New	Existing and new	
		30%, 50%, 100%	
Conversion ratio	20%	(Depends on the	
		quadrant)	
Hydrogen content in the mixed	Three scenarios	Existing 30%	
fuel	(10%, 20%, 30%)	New 100%	

Table 2.7: Comparison of Scenarios in the Electricity Generation Sector

Source: Author.

Figure 2.4 shows the hydrogen demand potential of the electricity generation sector in 2040, by quadrant. Compared to the phase 1 study, hydrogen demand potential increases in quadrants A and B. However, it decreases in quadrants C and D. The difference comes from a different expectation for natural electricity generation. In quadrants A and B, countries are expected to generate a large capacity of natural gas electricity. Meanwhile in quadrants C and D, countries are expected to generate a larger capacity of coal electricity rather than natural gas.

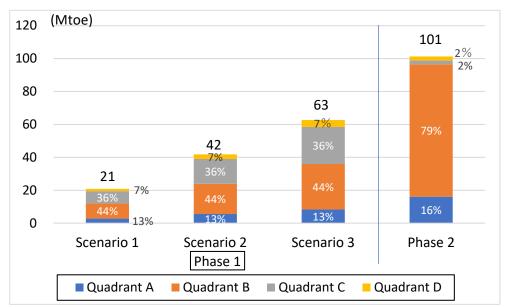


Figure 2.4: Hydrogen Demand Potential of the Electricity Generation Sector in the EAS, by Quadrant

EAS = East Asia Summit. Source: Author.

Table 2.8 shows electricity generation from coal and natural gas, which is the basis of the calculation of hydrogen demand potential, and their share to total electricity generation. The latter is a reference to make comparison easier.

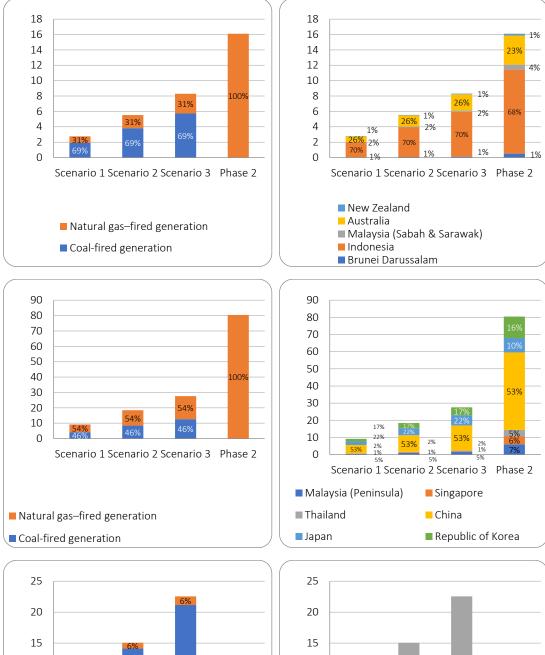
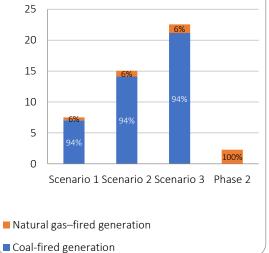
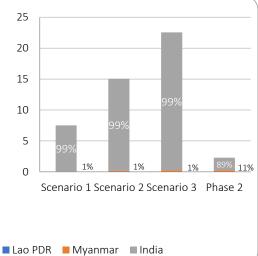

	Ele	ectricity Ge	neration (T	Wh)		Shar	°e, %		
	Pha	ase 1	Pha	se 2					
Country	Coal	Natural	Natural	Natural	Co	Coal		Natural Gas	
	CUal	Gas	Gas	Gas					
	New	New	Existing	New	2015	2040	2015	2040	
Brunei	4	10	9	5		21	99	79	
Darussalam	4	10	9	J		21	99	75	
Indonesia	551	161	86	134	56	70	25	23	
Malaysia									
(Sabah and	4	12	13	6	10	10	24	26	
Sarawak)									
Australia	141	119	90	28	63	38	21	32	
New Zealand	0	10	10	1	4	0	16	18	
Quadrant A	700	312	208	174	52	56	23	26	
Malaysia	78	109	121	52	50	47	52	58	
(Peninsula)	70	105	121	52	50	+/	52	50	
Singapore	1	38	74	11	1	1	95	91	
Thailand	39	44	151	10	20	24	71	55	
China	780	994	683	456	70	49	2	11	
Japan	337	390	381	9	33	29	40	34	
Republic of	309	256	181	74	43	42	22	34	
Korea	303	250	101	74	43	42	22	54	
Quadrant B	1,544	1,831	1,591	613	62	45	12	17	
Lao PDR	43	_	_	_	13	63	0	0	
Myanmar	27	7	9	4	0	42	41	22	
India	2,557	162	154	77	75	75	5	5	
Quadrant C	2,627	169	163	81	74	74	5	5	
Cambodia	11	7	2	5	48	34	0	18	
Philippines	68	37	33	23	45	49	23	26	
Viet Nam	325	65	85	25	32	69	28	20	
Quadrant D	405	109	120	52	36	62	26	22	
Total	5,275	2,421	2,083	920	62	54	12	15	

Table 2.8: Electricity Generation from Coal and Natural Gas, by Country


Note: Malaysia is divided by generation capacity.


The definition of 'New generation' is different between phases 1 and 2 of the study. Source: Author.

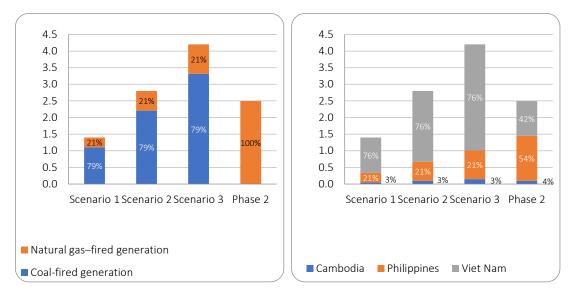

Figure 2.5 shows the hydrogen demand potential in 2040 by generation fuel and by country.

Figure 2.5: Hydrogen Demand Potential of the Electricity Generation Sector, by Country

Note: Malaysia is divided by natural gas generation capacity. Source: Author.

2.3.1. Transport sector

Figure 2.6 shows the hydrogen demand potential of the transport sector of the EAS in 2040. In the phase 2 study, hydrogen demand potential will reach 11 Mtoe. Compared to phase 1, hydrogen demand potential will increase 7 Mtoe from scenario 1 but will decrease 4 Mtoe from scenario 2 and 19 Mtoe from scenario 3.

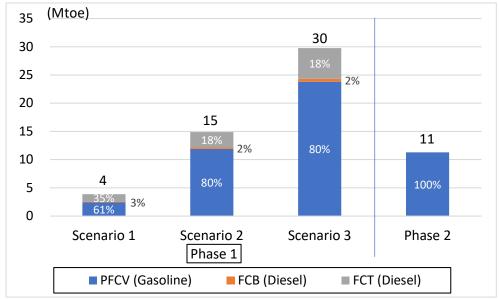


Figure 2.6: Hydrogen Demand Potential of the Transport Sector in the EAS in 2040

Note: PFCV = passenger fuel cell vehicle, FCB = fuel cell bus, FCT = fuel cell train. Source: Author. Table 2.9 compares the scenarios in the transport sector between the two study phases.

Item	Phase 1	Phase 2
	Passenger vehicle	
Mode	Bus	Passenger vehicle
	Railway	
	Ratio: Depends on country	
	Passenger:	
	From 1% to 20%	1 50/ 20/ 100/
Conversion ratio	Bus:	1.5%, 3%, 10%
	From 0.025% to 0.2%	(Depends on quadrant)
	Railway:	
	From 5% to 20%	

Table 2.9: Comparison of Scenarios in the Transport Sector

Source: Author.

Figure 2.7 shows the hydrogen demand potential of the transport sector in 2040, by quadrant.

Compared to the phase 1 study, hydrogen demand in quadrant A countries will increase 2.6 Mtoe from scenario 1, 0.4 Mtoe from scenario 2, but will decrease 2.6 Mtoe from scenario 3. Quadrant B will increase 4.2 Mtoe from scenario 1 but will decrease 1.4 Mtoe from scenario 2 and 8.8 Mtoe from scenario 3. Quadrant C will increase 0.8 Mtoe from scenario 1 but will decrease 1.9 Mtoe from scenario 2 and 5.6 Mtoe from scenario 3. Quadrant D will decrease 0.2 Mtoe from scenario 1, 0.7 Mtoe from scenario 2, and 1.5 Mtoe from scenario 3.

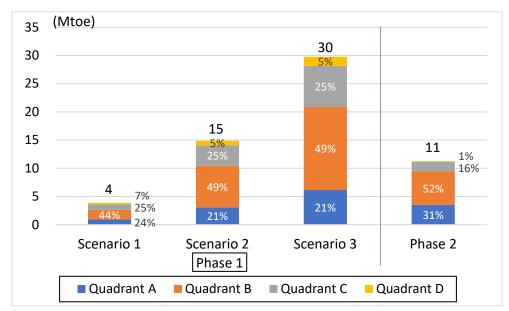


Figure 2.7: Hydrogen Demand Potential of the Transport Sector in the EAS, by Quadrant

EAS = East Asia Summit. Source: Author.

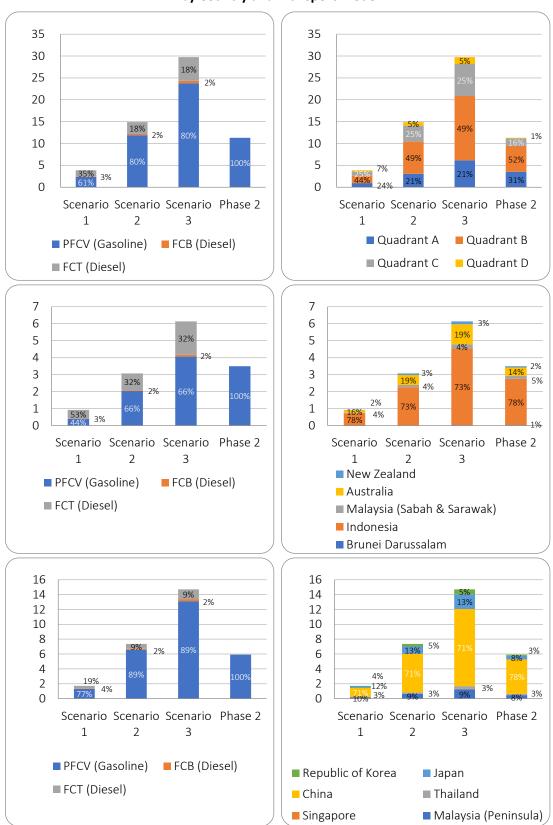
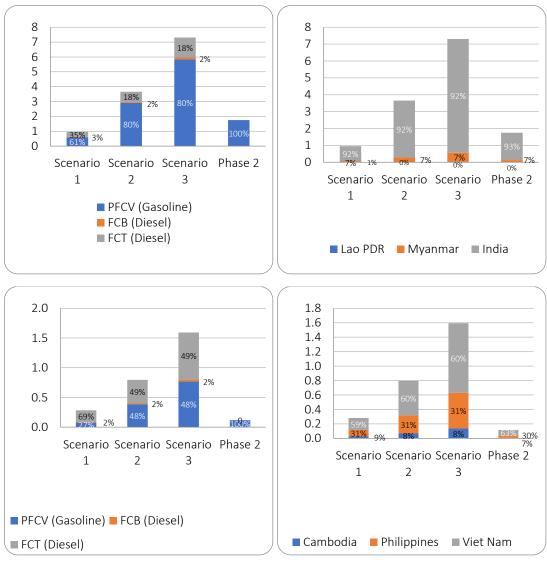



Figure 2.8 shows the hydrogen demand potential in 2040 by transport mode and by country.

Figure 2.8: Hydrogen Demand Potential of the Transport Sector, by Country and Transport Mode

PFCV = passenger fuel cell vehicle, FCB = fuel cell bus, FCT = fuel cell train. Note: Malaysia is divided by state GDP in 2018. Source: Author.

2.3.3. Total hydrogen demand potential

Figure 2.9 shows the total hydrogen demand potential of the EAS in 2040. In the phase 1 study, hydrogen demand potential in the industry sector was included, which are 4 Mtoe in scenario 1, 8 Mtoe in scenario 2, and 12 Mtoe in scenario 3. However, it was excluded in phase 2.

In phase 2, total hydrogen demand potential will reach 113 Mtoe. Compared to phase 1, total hydrogen demand potential will increase by 84 Mtoe from scenario 1, 48 Mtoe from scenario 2, and 8 Mtoe from scenario 3.

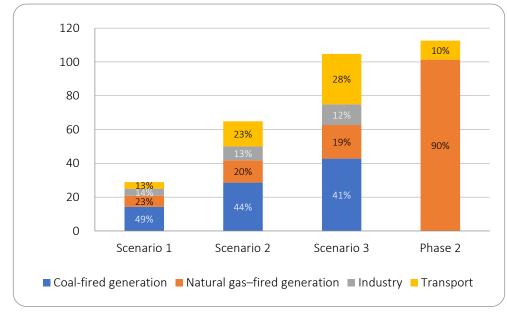


Figure 2.9: Total Hydrogen Demand Potential in the EAS in 2040

Source: Author.

Figure 2.10 shows the total hydrogen demand potential in 2040 by quadrant.

Compared to the phase 1 study, quadrant A will increase 15 Mtoe from scenario 1, 10 Mtoe from scenario 2, and 4 Mtoe from scenario 3. Quadrant B will increase 73 Mtoe from scenario 1, 55 Mtoe from scenario 2, and 36 Mtoe from scenario 3. Quadrant C will decrease 5 Mtoe from scenario 1, 16 Mtoe from scenario 2, and 28 Mtoe from scenario 3. Quadrant D will decrease 1 Mtoe from scenario 1 but will decrease 1 Mtoe from scenario 2 and 4 Mtoe from scenario 3.

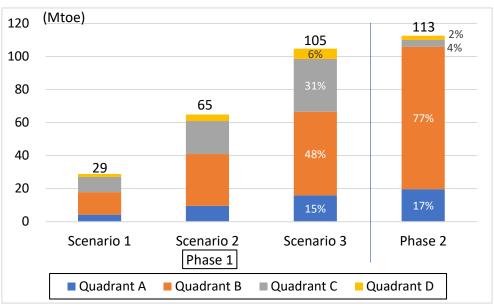


Figure 2.10: Total Hydrogen Demand Potential in the EAS in 2040, by Quadrant

Source: Author.

Figure 2.11 shows the total hydrogen demand potential in 2040 by sector and by country.

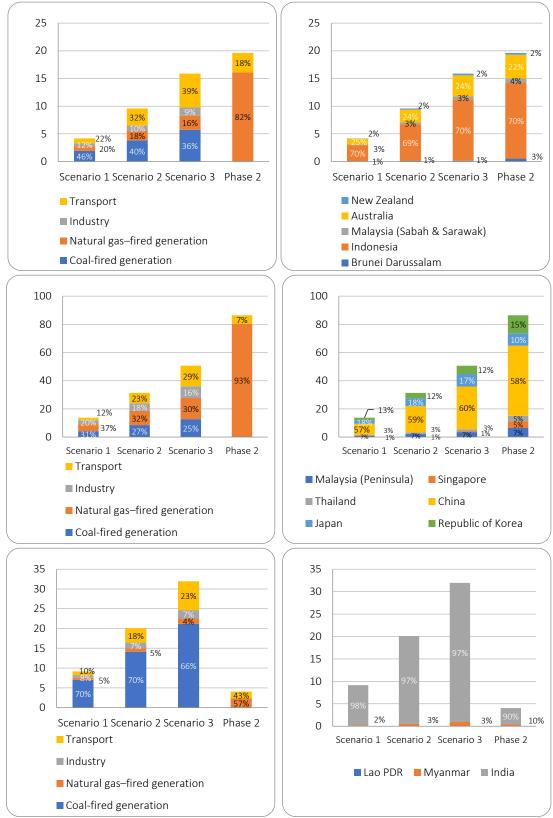
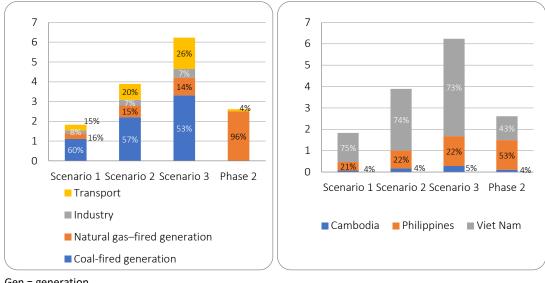



Figure 2.11: Total Hydrogen Demand Potential, by Country and Sector

Gen = generation. Source: Author.

2.4. Replaced energy

Table 2.10 shows the electricity generation sector's replaced energy by hydrogen in 2040. In the phase 1 study, net natural gas demand increased in many countries because it assumed 20% of coal-fired electricity generation to be replaced by natural gas and hydrogen mixed fuel-fired electricity generation.

												Unit: Mtoe
						Phase 1						Phase 2
Generation	Coal Fire	ed			Natu	ural Gas	Fired	Coal Fired	I + Natur	al Gas F	ired	Natural Gas Fired
Fuel	Replaced coal	New nat	ural gas	iral gas demand		nd Replaced natural gas		Replaced coal	Net nat	ural gas i	ncrease	Replaced natural gas
Scenario	S1, S2, S3	S1	S2	S3	S1	S2	S3	S1, S2, S3	S1	S2	S3	-
Brunei Darussalam	-0.1	0.1	0.1	0.1	-0.0	-0.1	-0.1	-0.1	0.1	0.0	-0.0	-0.5
Indonesia	-9.5	13.5	12.0	10.5	-0.4	-0.9	-1.3	-9.5	13.1	11.2	9.2	-10.9
Malaysia	-0.1	0.1	0.1	0.1	-0.0	-0.1	-0.1	-0.1	0.1	0.0	-0.0	-0.7
Australia	-2.4	3.5	3.1	2.7	-0.3	-0.6	-1.0	-2.4	3.2	2.4	1.7	-3.8
New Zealand	0.0	0.0	0.0	0.0	-0.0	-0.1	-0.1	0.0	-0.0	-0.1	-0.1	-0.2
Quadrant A	-12.0	17.2	15.3	13.4	-0.9	-1.7	-2.6	-12.0	16.3	13.6	10.8	-16.1
Malaysia	-1.3	1.9	1.7	1.5	-0.3	-0.6	-0.9	-1.3	1.6	1.1	0.6	-6.0
Singapore	-0.0	0.0	0.0	0.0	-0.1	-0.2	-0.3	-0.0	-0.1	-0.2	-0.3	-4.6
Thailand	-0.7	1.0	0.8	0.7	-0.1	-0.2	-0.4	-0.7	0.8	0.6	0.4	-3.8
China	-13.4	19.2	17.0	14.9	-2.7	-5.4	-8.1	-13.4	16.5	11.6	6.8	-45.1
Japan	-5.8	8.3	7.4	6.4	-1.1	-2.1	-3.2	-5.8	7.2	5.2	3.3	-8.4
Republic of Korea	-5.3	7.6	6.7	5.9	-0.7	-1.4	-2.1	-5.3	6.9	5.3	3.8	-12.5
Quadrant B	-26.6	37.9	33.7	29.5	-5.0	-10.0	-15.0	-26.6	32.9	23.7	14.5	-80.4
Lao PDR	-	-	-	-	-	-	-	-	-	-	-	-
Myanmar	-0.5	0.7	0.6	0.5	-0.0	-0.0	-0.1	-0.5	0.6	0.5	0.4	-0.3
India	-44.0	62.8	55.9	48.9	-0.4	-0.9	-1.3	-44.0	62.4	55.0	47.5	-2.0
Quadrant C	-44.4	63.5	56.4	49.4	-0.5	-0.5	-0.5	-44.4	63.0	55.5	48.0	-2.3
Cambodia	-0.2	0.3	0.2	0.2	-0.0	-0.0	-0.1	-0.2	0.2	0.2	0.2	-0.1
Philippines	-1.2	1.7	1.5	1.3	-0.1	-0.2	-0.3	-1.2	1.6	1.3	1.0	-1.4
Viet Nam	-5.6	8.0	7.1	6.2	-0.2	-0.4	-0.5	-5.6	7.8	6.8	5.7	-1.0
Quadrant D	-7.0	9.9	8.8	7.7	-0.3	-0.3	-0.3	-7.0	9.6	8.2	6.8	-2.5
Total	-90.0	128.6	114.3	100.0	-6.6	-12.5	-18.3	-90.0	122.0	101.1	80.2	-101.3

 Table 2.10: Replaced Energy by Hydrogen in the Electricity Generation Sector in 2040

Notes: S1 = scenario 1, S2 = scenario 2, S3 = scenario 3; Negative number = decrease of demand, Positive number = increase of demand; Malaysia is divided by generation capacity. Source: Author.

Table 2.11 shows the industry sector's replaced energy by hydrogen in 2040. In the phase 2 study, the industry sector was not included to calculate hydrogen demand potential.

			I	Unit: Mtoe			
		Phase 1					
Fuel	Rep	aced Natura	al Gas	-			
Scenario	Scenario	1 Scenario 2	Scenario 3	-			
Brunei Darussalam	-	-	-	-			
Indonesia	-0.3	-0.5	-0.8	-			
Malaysia (Sabah & Sarawak	-0.0	-0.1	-0.1	-			
Australia	-0.2	-0.3	-0.5	-			
New Zealand	-0.0	-0.0	-0.1	-			
Quadrant A	-0.5	-1.0	-1.5	-			
Malaysia (Peninsula)	-0.2	-0.4	-0.7	-			
Singapore	-0.0	-0.1	-0.1	-			
Thailand	-0.2	-0.4	-0.6	-			
China	-1.8	-3.6	-5.4	-			
Japan	-0.3	-0.6	-0.9	-			
Republic of Korea	-0.2	-0.4	-0.7	-			
Quadrant B	-2.8	-5.5	-8.3	-			
Lao PDR	-	-	-	-			
Myanmar	-0.0	-0.1	-0.1	-			
India	-0.7	-1.3	-2.0	-			
Quadrant C	-0.7	-1.4	-2.1	-			
Cambodia	-	-	-	-			
Philippines	-0.0	-0.0	-0.0	-			
Viet Nam	-0.1	-0.3	-0.4	-			
Quadrant D	-0.1	-0.3	-0.4	-			
Total	-4.1	-8.2	-12.3	-			

Table 2.11: Replaced Energy by Hydrogen in the Industry Sector in 2040

Note: Malaysia is divided by state GDP in 2018. Source: Author.

Table 2.12 shows the transport sector's replaced energy by hydrogen in 2040. In the phase 2 study, diesel demand (bus and railway) was not included to calculate hydrogen demand potential.

The fuel economy of FCVs was assumed to be 2.7 times better than gasoline vehicles. (Please see the phase 1 study.)

							Unit: Mtoe
				ise 1			Phase 2
Replaced Fuel		Gasoline	•		Diesel		Gasoline
Scenario	Scenario	1 Scenario	2 Scenario 3	Scenario	1 Scenario	2 Scenario 3	-
Brunei Darussalam	-0.0	-0.0	-0.1	-0.0	-0.0	-0.0	-0.1
Indonesia	-0.7	-3.7	-7.4	-0.4	-0.9	-1.8	-7.4
Malaysia (Sabah & Sarawak	-0.0	-0.2	-0.5	-0.0	-0.0	-0.1	-0.5
Australia	-0.3	-1.3	-2.6	-0.1	-0.1	-0.2	-1.3
New Zealand	-0.0	-0.2	-0.4	-0.0	-0.0	-0.0	-0.2
Quadrant A	-1.1	-5.5	-11.0	-0.5	-1.0	-2.1	-9.4
Malaysia (Peninsula)	-0.2	-1.2	-2.5	-0.1	-0.2	-0.3	-1.2
Singapore	-0.0	-0.0	-0.1	-0.0	-0.0	-0.0	-0.0
Thailand	-0.1	-0.4	-0.9	-0.0	-0.0	-0.0	-0.4
China	-2.5	-12.5	-25.0	-0.3	-0.6	-1.1	-12.5
Japan	-0.5	-2.6	-5.2	-0.0	-0.0	-0.1	-1.3
Republic of Korea	-0.2	-0.9	-1.7	-0.0	-0.0	-0.0	-0.4
Quadrant B	-3.5	-17.7	-35.4	-0.4	-0.8	-1.6	-16.0
Lao PDR	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
Myanmar	-0.1	-0.6	-1.1	-0.0	-0.1	-0.1	-0.3
India	-1.5	-7.3	-14.6	-0.3	-0.7	-1.4	-4.4
Quadrant C	-1.6	-7.9	-15.8	-0.4	-0.7	-1.5	-4.7
Cambodia	-0.0	-0.1	-0.1	-0.0	-0.0	-0.1	-0.0
Philippines	-0.1	-0.3	-0.6	-0.1	-0.1	-0.3	-0.1
Viet Nam	-0.1	-0.7	-1.3	-0.1	-0.2	-0.5	-0.2
Quadrant D	-0.2	-1.0	-2.1	-0.2	-0.4	-0.8	-0.3
Total	-6.4	-32.1	-64.2	-1.5	-3.0	-6.0	-30.5

Table 2.12: Replaced Energy by Hydrogen in the Transport Sector in 2040

Note: Malaysia is divided by state GDP in 2018. Source: Author.

Table 2.13 shows the total replaced energy by hydrogen in 2040.

												Unit: Mtoe
					Phas	se 1					Pha	se 2
Replaced Fuel	Coal	N	latural Ga	IS		Gasoline			Diesel		Natural Gas	Gasoline
Scenario	S1, S2, S3	S1	S2	S3	S1	S2	S3	S1	S2	S3	-	-
Brunei Darussalam	-0.1	0.1	0.0	-0.0	-0.0	-0.0	-0.1	-0.0	-0.0	-0.0	-0.5	-0.1
Indonesia	-9.5	12.8	10.6	8.4	-0.7	-3.7	-7.4	-0.4	-0.9	-1.8	-10.9	-7.4
Malaysia	-0.1	0.0	-0.1	-0.2	-0.0	-0.2	-0.5	-0.0	-0.0	-0.1	-0.7	-0.5
Australia	-2.4	3.0	2.1	1.2	-0.3	-1.3	-2.6	-0.1	-0.1	-0.2	-3.8	-1.3
New Zealand	0.0	-0.1	-0.1	-0.2	-0.0	-0.2	-0.4	-0.0	-0.0	-0.0	-0.2	-0.2
Quadrant A	-12.0	15.9	12.6	9.4	-1.1	-5.5	-11.0	-0.5	-1.0	-2.1	-16.1	-9.4
Malaysia	-1.3	1.4	0.7	-0.1	-0.2	-1.2	-2.5	-0.1	-0.2	-0.3	-6.0	-1.2
Singapore	-0.0	-0.1	-0.3	-0.4	-0.0	-0.0	-0.1	-0.0	-0.0	-0.0	-4.6	-0.0
Thailand	-0.7	0.6	0.2	-0.2	-0.1	-0.4	-0.9	-0.0	-0.0	-0.0	-3.8	-0.4
China	-13.4	14.7	8.0	1.4	-2.5	-12.5	-25.0	-0.3	-0.6	-1.1	-45.1	-12.5
Japan	-5.8	6.9	4.6	2.3	-0.5	-2.6	-5.2	-0.0	-0.0	-0.1	-8.4	-1.3
Republic of Korea	-5.3	6.7	4.9	3.1	-0.2	-0.9	-1.7	-0.0	-0.0	-0.0	-12.5	-0.4
Quadrant B	-26.6	30.2	18.2	6.2	-3.5	-17.7	-35.4	-0.4	-0.8	-1.6	-80.4	-16.0
Lao PDR	-	-	-	-	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-0.0
Myanmar	-0.5	0.6	0.5	0.3	-0.1	-0.6	-1.1	-0.0	-0.1	-0.1	-0.3	-0.3
India	-44.0	61.7	53.6	45.6	-1.5	-7.3	-14.6	-0.3	-0.7	-1.4	-2.0	-4.4
Quadrant C	-44.4	62.3	54.1	45.9	-1.6	-7.9	-15.8	-0.4	-0.7	-1.5	-2.3	-4.7
Cambodia	-0.2	0.2	0.2	0.2	-0.0	-0.1	-0.1	-0.0	-0.0	-0.1	-0.1	-0.0
Philippines	-1.2	1.6	1.3	1.0	-0.1	-0.3	-0.6	-0.1	-0.1	-0.3	-1.4	-0.1
Viet Nam	-5.6	7.7	6.5	5.3	-0.1	-0.7	-1.3	-0.1	-0.2	-0.5	-1.0	-0.2
Quadrant D	-7.0	9.5	8.0	6.4	-0.2	-1.0	-2.1	-0.2	-0.4	-0.8	-2.5	-0.3
Total	-90.0	117.9	92.9	67.9	-6.4	-32.1	-64.2	-1.5	-3.0	-6.0	-101.3	-30.5

Table 2.13: Total Replaced Energy by Hydrogen in 2040

Notes: S1 = scenario 1, S2 = scenario 2, S3 = scenario 3, Negative number = decrease of demand, Positive number = increase of demand. Source: Author.

2.5. Reduction in CO₂ emission

Figure 2.12 shows the reduction in CO_2 emission, which can be attained by switching fuel from fossil fuel to hydrogen. In the phase 2 study, CO_2 emission will be reduced to 327 million tonnes- CO_2 in 2040. Compared to the phase 1 study, CO_2 emission will decrease by 68 million tonnes- CO_2 from scenario 1, 206 million tonnes- CO_2 from scenario 2, and 367 million tonnes- CO_2 from scenario 3. The main reason for reduced CO_2 emission is that coal-fired electricity generation was not included in calculating hydrogen demand potential in the phase 2 study.

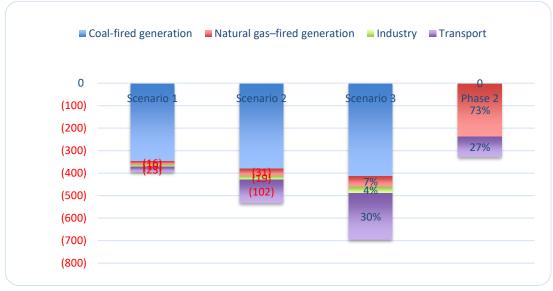


Figure 2.12: CO_2 Emission Reduction in the EAS in 2040

Figure 2.13 shows the reduction in CO₂ emission in 2040 by quadrant.

Compared to the phase 1 study, quadrant A countries will increase CO₂ emission by 11 million tonnes-CO₂ from scenario 1 but will decrease 11 million tonnes-CO₂ from scenario 2 and 38 million tonnes-CO₂ from scenario 3. Quadrant B will increase 103 million tonnes-CO₂ from scenario 1 and 33 million tonnes-CO₂ from scenario 2 but will decrease 49 million tonnes-CO₂ from scenario 3. Quadrant C will decrease 160 million tonnes-CO₂ from scenario 1, 199 million tonnes-CO₂ from scenario 2, and 243 million tonnes-CO₂ from scenario 3. Quadrant D will decrease 22 million tonnes-CO₂ from scenario 1, 29 million tonnes-CO₂ from scenario 2, and 37 million tonnes-CO₂ from scenario 3.

Source: Author.

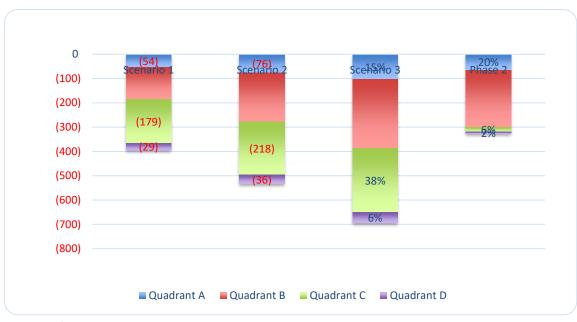


Figure 2.13: CO₂ Emission Reduction in 2040, by Quadrant

Source: Author.

Figure 2.14 shows the CO₂ emission reduction in 2040 by sector and by country.

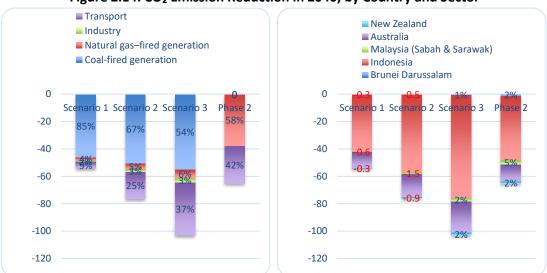
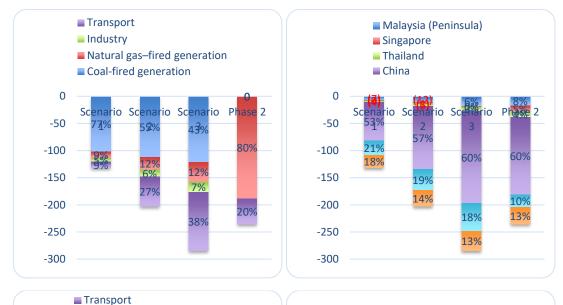
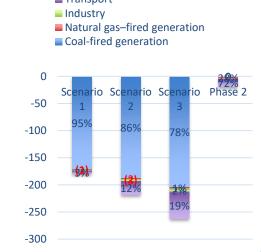
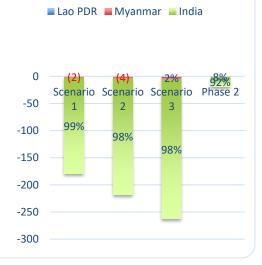
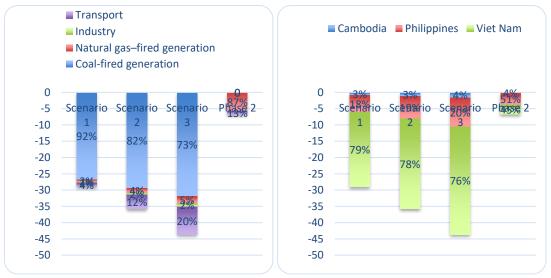






Figure 2.14: CO₂ Emission Reduction in 2040, by Country and Sector

Source: Author.

3. Summary of Hydrogen Demand Potential

3.1. Hydrogen demand potential under the revised scenario

The scenarios estimating the hydrogen demand potential were revised from the phase 1 study by considering recent development of relevant technologies.

1) Electricity generation sector

At present, 30% hydrogen mix natural gas combustion in combined cycle gas turbine (CCGT) is already commercially available. Further, commercial-scale pure hydrogen CCGT is being tested. Considering these developments, the phase 2 study excluded coal electricity generation, and adopted a more ambitious target, i.e. pure hydrogen CCGT to be commercialised after 2030, and fuel switch from natural gas electricity generation. With these changes, hydrogen demand potential was greater than in the phase 1 study.

2) Industry sector

The industry sector was excluded in the phase 2 study.

3) Transport sector

Competition amongst vehicle technologies is tougher. Development and deployment of battery electric vehicles are going forward, whilst FCVs are slow due to higher technology cost. Therefore, the study team decided to revise the expectation of future deployment of FCVs. Besides, the phase 2 study excluded diesel demand for bus and railway from the subject of estimation as their hydrogen potential is negligible.

Table 2.14 shows the estimated hydrogen demand potential under the new scenarios.

Castar		Phase 1					
Sector	Scenario 1	Scenario 2	Scenario 3	Phase 2			
Coal-fired generation	14	29	43	-			
Natural gas-fired generation	7	13	20	101			
Industry	4	8	12	-			
Transport	4	15	30	11			
Total	29	65	105	113			

Table 2.14: EAS Hydrogen Demand Potential, by Sector (Summary)

Unit: Mtoe

Note: Due to rounding, the sum of the sectors does not match the total. Source: Author.

3.2. Hydrogen demand potential by country group

In phase 2, analysis was made by applying different scenarios, unique fuel switch rate, for each country group. EAS countries are classified according to their hydrogen supply cost and income level.

		Hydrogen Supply Cost					
		Cheap	Expensive				
		Α	В				
		Brunei Darussalam	Malaysia (Peninsula)				
	_	Indonesia	Singapore				
	High	Malaysia (Sabah and Sarawak)	Thailand				
Level	-	Australia	China				
ne l		New Zealand	Japan				
Income			Republic of Korea				
L L		С	D				
	Low	Lao PDR	Cambodia				
	ΓO	Myanmar	Philippines				
		India	Viet Nam				

Table 2.15: Classification of EAS Countries, Excluding the United States (Summary)

EAS = East Asia Summit. Source: Author.

The estimated result is shown in Table 2.16. It shows a large hydrogen demand potential in quadrants A and B, whilst it is small in quadrants C and D. The results come from different perspectives for future power generation mix. The hydrogen demand potential is larger for countries where a large increase of natural gas electricity generation is expected, i.e. quadrants A and B countries. In contrast, countries where increase of natural gas electricity generation is small, those in quadrants C and D have a smaller hydrogen demand potential.

Table 2.16: EAS Hydrogen Demand Potential, by Quadrant (Summary)

Quadrant		Phase 2		
Quadrant	Scenario 1	Scenario 2	Scenario 3	Flidse Z
А	4	10	16	20
В	14	31	51	86
С	9	20	32	4
D	2	4	6	3
Total	29	65	105	113

Unit:Mtoe

EAS = East Asia Summit. Source: Author.

3.3. Reduction in CO₂ emission

Fuel switch to hydrogen can anticipate a reduction in CO_2 emission. Table 2.17 shows the estimates. The estimated amount of CO_2 is smaller in the phase 2 study because fuel switch from carbon-intensive coal to hydrogen, which was included in the phase 1 study, was not included in phase 2.

Sector		Phase 2		
Sector	Scenario 1	Scenario 2	Scenario 3	Plidse Z
Coal-fired generation	-346	-380	-413	-
Natural gas-fired generation	-16	-31	-47	-238
Industry	-10	-19	-29	-
Transport	-23	-102	-205	-88
Total	-395	-533	-694	-327

Unit: Million tonnes-CO₂

EAS = East Asia Summit.

Note: Due to rounding, the sum of sectors does not match the total. Source: Author.

Likewise, in the estimation results of hydrogen demand potential, reduction in CO_2 emission is larger in quadrants A and B, and smaller in quadrants C and D.

Table 2.18: Comparison CO₂ Emission Reduction in the EAS (Summary)

Quadrant		Phase 2		
Quaurant	Scenario 1	Scenario 2	Scenario 3	Flidse Z
A	-54	-76	-103	-65
В	-132	-202	-284	-235
С	-179	-218	-263	-19
D	-29	-36	-44	-7
Total	-395	-533	-694	-327

Unit: Million tonnes-CO₂

EAS = East Asia Summit.

Note: Due to rounding, the sum of sectors does not match the total. Source: Author.