# Chapter **3**

## **Optimal Hydrogen Supply Chain in East Asia**

June 2022

#### This chapter should be cited as

ERIA Study team (2022), 'Optimal Hydrogen Supply Chain in East Asia', in Shigeru Kimura, Alloysius Joko Purwanto, Ichiro Kutani, Takahisa Hiruma, Dian Lutfiana, Citra Endah Nur Setyawati (eds.), *Demand and Supply Potential of Hydrogen Energy in East Asia – Phase 3*. ERIA Research Project Report FY2022 No. 04, Jakarta: ERIA, pp.20-38.

### Chapter 3

### Optimal Hydrogen Supply Chain in East Asia

#### 1. Background

As previously stated, hydrogen is produced from fossil fuels and water. Therefore, hydrogen production sites are different from hydrogen consumption sites. The development of a hydrogen supply network – the hydrogen supply chain – is thus key in the EAS region. Based on the hydrogen production of hydrogen-exporting countries, hydrogen consumption of hydrogen-importing countries, distances between hydrogen-exporting and -importing countries, and transport costs, this section outlines optimal hydrogen transport routes and amounts in 2040 when hydrogen will be used commercially as a zero-emission fuel.

#### 2. Optimisation Approach

To find an optimal hydrogen supply chain solution in 2040, the linear programming approach was applied, and its model structure consists of following blocks.

**Hydrogen consumption block.** This is the hydrogen consumption amount (Nm<sup>3</sup>) of hydrogen-importing countries in the EAS region:

$$\sum_{i} \sum_{k} X_{jjk} = HC_j \tag{2}$$

Where:

 $X_{ijk}$  = the hydrogen transport amount from exporting country *i* to importing country *j* by transport mode *k*, and

*HC<sub>j</sub>* = hydrogen consumption of importing country *j*.

**Hydrogen production block.** This is the hydrogen production amount (Nm<sup>3</sup>) of hydrogen-exporting countries in the EAS region:

$$\sum_{j} \sum_{k} X_{ijk} = HP_i \tag{3}$$

Where:

 $X_{ijk}$  = the hydrogen transport amount from exporting country *i* to importing country *j* by transport mode *k*, and

HP<sub>i</sub> = hydrogen production amount of exporting country *i*.

**Distance block**. This is the distance (km) between hydrogen-exporting and -importing countries, where  $D_{ij}$  is the distance between hydrogen-exporting country *i* and hydrogen-importing country *j*.

**Cost block.** This is the hydrogen transport cost (\$ per Nm<sup>3</sup> per km) from exporting country *i* to hydrogen-importing country *j* by transport mode *k*, where  $C_{ijk}$  is the transport cost from hydrogen-exporting country *i* and hydrogen-importing country *j* by transport mode *k*. **Objective function.** 

$$\sum_{i} \sum_{j} \sum_{k} X_{ijk} D_{ij} C_{ijk} \quad -> MIN \tag{4}$$

#### Figure 3.1. Hydrogen Optimisation – Linear Programming Model



Source: Author.

#### 3. Model Assumptions

#### 3.1 Selection of Hydrogen-Exporting and -Importing Countries

As hydrogen-exporting countries in EAS region, the following five countries and areas were selected for developing the hydrogen linear programming model:

- (i) **Australia.** Large potential of fossil fuels (i.e. coal and gas) and variable renewable energy (e.g. solar PV systems).
- (ii) **Brunei Darussalam.** Some potential of fossil fuels, such as gas.
- (iii) Indonesia. Large potential of fossil fuels (i.e. coal and gas) and hydropower.
- (iv) Sarawak, Malaysia. Large hydropower potential.
- (v) **New Zealand.** Large potential of hydropower, wind power, and geothermal power.

In addition, the ports of the five hydrogen-exporting countries and areas were defined:

- (i) Australia. Port of Melbourne.
- (ii) Brunei Darussalam. Port of Muara.
- (iii) Indonesia. Port of Bontang.
- (iv) Sarawak, Malaysia: Senari Port, Kuching.
- (v) New Zealand: Lyttelton Port, Christchurch.

The shipped amount of hydrogen from each port in 2040 is outlined in Table 3.1.

| Country           | Amount  |
|-------------------|---------|
| Australia         | 284,313 |
| Brunei Darussalam | 26,979  |
| Indonesia         | 209,603 |
| Malaysia          | 128,667 |
| New Zealand       | 22,828  |

#### Table 3.1. Supply Amount of Hydrogen (million normal cubic metres)

Source: ERIA (2018).

As hydrogen-importing countries in the EAS region, the following five countries were selected for developing the linear programming model:

- (i) **Japan.** Replacing gas power generation by hydrogen power generation and internal combustion engine (ICE) by fuel cell vehicles (FCVs).
- (ii) Korea. Replacing gas power generation by hydrogen power generation and ICE by FCVs.
- (iii) **Peninsular Malaysia.** Replacing gas power generation by hydrogen power generation and ICE by FCVs.
- (iv) **Singapore.** Replacing gas power generation by hydrogen power generation.
- (v) **Thailand.** Replacing gas power generation by hydrogen power generation and ICE by FCVs.

The receiving ports of the five hydrogen exporting countries are outlined below:

- (i) Japan. Port of Tokyo.
- (ii) Korea. Port of Incheon.
- (iii) Malaysia. Port of Kuantan.
- (iv) **Singapore.** Port of Singapore

(v) Thailand. Khlong Toei Port, Bangkok.

The amount of hydrogen received in each port of the five hydrogen-exporting countries in 2040 is outlined in Table 3.2.

#### Table 3.2. Demand Amount for Hydrogen

(million normal cubic metres)

| Country            | Amount  |
|--------------------|---------|
| Japan              | 302,811 |
| Korea, Republic of | 193,609 |
| Malaysia           | 106,474 |
| Singapore          | 14,707  |
| Thailand           | 54,788  |
|                    |         |

Source: ERIA (2019a).

#### 3.2. Distance between Hydrogen Shipping Ports and Receiving Ports

Distances between hydrogen-exporting and -importing ports are defined in Table 3.3.

|                           | Port of    | Port of    | Senari   | Port of   | Lyttelton     |
|---------------------------|------------|------------|----------|-----------|---------------|
|                           | Melbourne, | Muara,     | Port,    | Bontang,  | Port,         |
|                           | Australia  | Brunei     | Kuching, | Indonesia | Christchurch, |
| <b>Origin/Destination</b> |            | Darussalam | Malaysia |           | New Zealand   |
| Port of Tokyo,            | 9,910.0    | 4,342.9    | 6,172.7  | 5,817.1   | 11,626.9      |
| Japan                     |            |            |          |           |               |
| Port of Incheon,          | 11,191.6   | 3,802.2    | 5,144.9  | 5,104.1   | 12,862.1      |
| Korea                     |            |            |          |           |               |
| Port of Singapore         | 8,067.3    | 1,335.3    | 1,000.1  | 2,468.7   | 11,708.3      |
| Port of Kuantan,          | 8,461.8    | 1,400.1    | 981.6    | 2,776.1   | 12,101.0      |
| Malaysia                  |            |            |          |           |               |
| Port of Laem              | 9,617.4    | 2,340.9    | 2,137.2  | 3,648.4   | 12,917.7      |
| Chabang, Thailand         |            |            |          |           |               |
| Khlong Toei Port,         | 9,741.5    | 2,465.0    | 2,261.3  | 3,772.5   | 13,041.8      |
| Bangkok, Thailand         |            |            |          |           |               |

#### Table 3.3. Distances between Hydrogen Supply and Demand Places (kilometres)

Note: The two Thailand ports are in the Bangkok area, but both ports are very close in case of long-distance transport; thus, both ports are merged into Port Laem Chabang to represent the port of Bangkok. Source: Ports.com, <u>http://ports.com/sea-</u>

route/#/?a=0&b=0&c=Port%20of%20Melbourne&d=Port%20of%20Tokyo (accessed 25 February 2021).

#### 3.3. Hydrogen Transport Costs

Two hydrogen transport methods were applied to the linear programming model: MCH and liquefied hydrogen. The unit cost of hydrogen transport was difficult to set due to varied transport conditions and uncertainties. Thus, under the following assumed conditions and forecasts, the unit cost curves are in Figures 3.2 and 3.3:

- (i) The target years are 2030–2050.
- (ii) The transport amounts of hydrogen are equivalent to 10,000 Nm<sup>3</sup>/hour, 50,000 Nm<sup>3</sup>/hour, and 500,000 Nm<sup>3</sup>/hour.
- (iii) Transport costs consist of overseas transport by ship MCH by chemical tankers and liquefied hydrogen by liquid hydrogen ships.
- (iv) Distances are 500–10,000 km.



#### Figure 3.2. Unit Cost of Hydrogen Transport, Methylcyclohexane

h = hour, km = kilometre, MCH = methylcyclohexane, Nm<sup>3</sup> = normal cubic metre. Source: Authors' calculations.



#### Figure 3.3. Unit Cost of Hydrogen Transport, Liquefied Hydrogen

h = hour, km = kilometre, L<sub>2</sub> = liquefied hydrogen, Nm<sup>3</sup> = normal cubic metre. Source: Authors' calculations. Hydrogen production costs depend on transport volume and distance. Liquefied hydrogen has an advantage due to its significant volume and long distances. However, small and midsize hydrogen amounts over short and middle distances are more ideal with MCH.

Referring to Figures 3.2 and 3.3 and calculating an average between 2030 and 2050, the unit cost of hydrogen transport between shipping and receiving ports is defined in Table 3.4.

|                      | Jap      | ban             | Ко       | rea             | Mala     | aysia           | Thai     | land            | Singapore |                 |
|----------------------|----------|-----------------|----------|-----------------|----------|-----------------|----------|-----------------|-----------|-----------------|
|                      | MCH      | LH <sub>2</sub> | MCH      | LH <sub>2</sub> | MCH      | LH <sub>2</sub> | МСН      | LH <sub>2</sub> | MCH       | LH <sub>2</sub> |
| Australia            | 2.686403 | 2.201606        | 2.861701 | 2.142090        | 2.448077 | 2.173979        | 2.660423 | 2.203566        | 2.365271  | 2.149006        |
| Brunei<br>Darussalam | 1.647809 | 1.766681        | 1.566005 | 1.661853        | 1.448334 | 1.476336        | 1.250556 | 1.299856        | 1.424133  | 1.450839        |
| Malaysia             | 1.982898 | 2.023305        | 1.737338 | 1.876775        | 1.218762 | 1.238394        | 1.375224 | 1.420450        | 1.232574  | 1.252576        |
| Indonesia            | 1.914345 | 1.988192        | 1.726893 | 1.869389        | 1.314300 | 1.372888        | 1.560495 | 1.655147        | 1.247912  | 1.263364        |
| New Zealand          | 2.912273 | 2.103939        | 3.031016 | 1.946159        | 2.962180 | 2.052039        | 3.045239 | 1.917103        | 2.921226  | 2.0955795       |

#### Table 3.4. Unit Cost of Hydrogen Transport between Shipping and Receiving Ports (cent/Nm³-km)

km = kilometre, L<sub>2</sub> = liquefied hydrogen, MCH = methylcyclohexane, Nm<sup>3</sup> = normal cubic metre. Source: Authors' calculations.

#### 4. Results of Hydrogen Transport Optimisation Model

#### 4.1. Optimisation of Hydrogen Transport Volume x Distance

First, using the hydrogen linear programming model, the following optimisation approach was conducted for the hydrogen volume x distance:

$$\sum_{i} \sum_{j} \sum_{k} X_{ijk} D_{ij} \longrightarrow MIN$$
(5)

Regarding the optimal calculation results, Australia and New Zealand will export their hydrogen mainly to Japan; Brunei Darussalam and Sarawak, Malaysia will export their hydrogen to neighbouring countries and areas such as Thailand and Peninsular Malaysia. Indonesia will export to Korea and Singapore. However, if Brunei Darussalam's hydrogen exporting amount increases by 1 billion Nm<sup>3</sup>, it increases its hydrogen transport to Thailand by 1 billion Nm<sup>3</sup> (i.e. 26,979 to 27,979). Thus, Indonesia will decrease its hydrogen exports to Thailand and increase its exports to Singapore by 1 billion Nm<sup>3</sup>; Australia will decrease exports to Singapore and increase exports to Japan; and New Zealand will reduce its exports to Japan by 1 billion Nm<sup>3</sup>. As a result, Brunei Darussalam's objective function (i.e. the total transport amount x distance) will decrease 3% – the highest reduction amongst the five hydrogen-exporting countries. In this case study, Brunei Darussalam's hydrogen-exporting volume will be essential when an optimal hydrogen supply chain is sought in the EAS region (Tables 3.5 - 3.10)

|                   | Japan   | Korea   | Malaysia | Thailand | Singapore | Total Supply  | Supply Constraint |
|-------------------|---------|---------|----------|----------|-----------|---------------|-------------------|
| Australia         | 279,984 | 0       | 0        | 0        | 4,329     | 284,313       | 284,313           |
| Brunei Darussalam | 0       | 0       | 0        | 26.979   | 0         | 26,979        | 26,979            |
| Malaysia          | 0       | 0       | 106,474  | 22,193   | 0         | 128,667       | 128,667           |
| Indonesia         | 0       | 193,609 | 0        | 5,616    | 10,378    | 209,603       | 209,603           |
| New Zealand       | 22,827  | 0       | 0        | 0        | 0         | 22,827        | 22,828            |
| Calculation       | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 4,331,181,398 | Volume x distance |
| Actual Demand     | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 672,389       |                   |

#### Table 3.5. Optimal Hydrogen Transport Solution (million Nm<sup>3</sup>)

 $Nm^3$  = normal cubic metre.

Source: Authors' calculations.

#### Table 3.6. Australia's Increase of 1 Billion Nm<sup>3</sup> of Hydrogen Production (million Nm<sup>3</sup>)

|                   | Japan   | Korea   | Malaysia | Thailand | Singapore | Total Supply  | Supply Constraint |
|-------------------|---------|---------|----------|----------|-----------|---------------|-------------------|
| Australia         | 280,984 | 0       | 0        | 0        | 4,329     | 285,313       | 284,313           |
| Brunei Darussalam | 0       | 0       | 0        | 26,979   | 0         | 26,979        | 26,979            |
| Malaysia          | 0       | 0       | 106,474  | 22,193   | 0         | 128,667       | 128,667           |
| Indonesia         | 0       | 193,609 | 0        | 5,616    | 10,378    | 209,603       | 209,603           |
| New Zealand       | 21,827  | 0       | 0        | 0        | 0         | 22,827        | 22,828            |
| Calculation       | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 4,329,464,498 | Volume x distance |
| Actual Demand     | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 672,389       |                   |

Nm<sup>3</sup> = normal cubic metre.

Note: The reduction ratio of the objective function compared to Table 3.5 is -0.04%. Source: Authors' calculations.

|                   | Japan   | Korea   | Malaysia | Thailand | Singapore | Total Supply  | Supply Constraint |
|-------------------|---------|---------|----------|----------|-----------|---------------|-------------------|
| Australia         | 280,984 | 0       | 0        | 0        | 3,329     | 284,313       | 284,313           |
| Brunei Darussalam | 0       | 0       | 0        | 26,979   | 0         | 27,979        | 26,979            |
| Malaysia          | 0       | 0       | 106,474  | 22,193   | 0         | 128,667       | 128,667           |
| Indonesia         | 0       | 193,609 | 0        | 5,616    | 11,378    | 209,603       | 209,603           |
| New Zealand       | 21,827  | 0       | 0        | 0        | 0         | 21,827        | 22,828            |
| Calculation       | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 4,198,216,893 | Volume x distance |
| Actual Demand     | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 672,389       |                   |

#### Table 3.7. Brunei Darussalam's Increase of 1 Billion Nm<sup>3</sup> of Hydrogen Production (million Nm<sup>3</sup>)

Nm<sup>3</sup> = normal cubic metre.

Note: The reduction ratio of the objective function compared to Table 3.5 is -3.10%.

Source: Authors' calculations.

#### Table 3.8. Sarawak, Malaysia's Increase of 1 Billion Nm<sup>3</sup> of Hydrogen Production (million Nm<sup>3</sup>)

|                   | Japan   | Korea   | Malaysia | Thailand | Singapore | Total Supply  | Supply Constraint |
|-------------------|---------|---------|----------|----------|-----------|---------------|-------------------|
| Australia         | 280,984 | 0       | 0        | 0        | 3,329     | 284,313       | 284,313           |
| Brunei Darussalam | 0       | 0       | 0        | 26,979   | 0         | 26,979        | 26,979            |
| Malaysia          | 0       | 0       | 106,474  | 23,193   | 0         | 129,667       | 129,667           |
| Indonesia         | 0       | 193,609 | 0        | 4,616    | 11,378    | 209,603       | 209,603           |
| New Zealand       | 21,827  | 0       | 0        | 0        | 0         | 21,827        | 22,828            |
| Calculation       | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 4,322,354,698 | Volume x distance |
| Actual Demand     | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 672,389       |                   |

Nm<sup>3</sup> = normal cubic metre.

Note: The reduction ratio of the objective function compared to Table 3.5 is -0.20%. Source: Authors' calculations.

|                   | Japan   | Korea   | Malaysia | Thailand | Singapore | Total Supply  | Supply Constraint |
|-------------------|---------|---------|----------|----------|-----------|---------------|-------------------|
| Australia         | 280,984 | 0       | 0        | 0        | 3,329     | 284,313       | 284,313           |
| Brunei Darussalam | 0       | 0       | 0        | 26,979   | 0         | 26,979        | 26,979            |
| Malaysia          | 0       | 0       | 106,474  | 22,193   | 0         | 128,667       | 128,667           |
| Indonesia         | 0       | 193,609 | 0        | 5,616    | 11,378    | 210,603       | 210,603           |
| New Zealand       | 21,827  | 0       | 0        | 0        | 0         | 21,827        | 22,828            |
| Calculation       | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 4,323,865,898 | Volume x distance |
| Actual Demand     | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 672,389       |                   |

#### Table 3.9. Indonesia's Increase of 1 Billion Nm<sup>3</sup> of Hydrogen Production (million Nm<sup>3</sup>)

Nm<sup>3</sup> = normal cubic metre.

Note: The reduction ratio of the objective function compared to Table 3.5 is -0.17%.

Source: Authors' calculations.

#### Table 3.10. New Zealand's Increase of 1 Billion Nm<sup>3</sup> of Hydrogen Production (million Nm<sup>3</sup>)

|                   | Japan   | Korea   | Malaysia | Thailand | Singapore | Total Supply  | Supply Constraint |
|-------------------|---------|---------|----------|----------|-----------|---------------|-------------------|
| Australia         | 279,984 | 0       | 0        | 0        | 4,329     | 284,313       | 284,313           |
| Brunei Darussalam | 0       | 0       | 0        | 26,979   | 0         | 26,979        | 26,979            |
| Malaysia          | 0       | 0       | 106,474  | 22,193   | 0         | 128,667       | 128,667           |
| Indonesia         | 0       | 193,609 | 0        | 5,616    | 10,378    | 209,603       | 209,603           |
| New Zealand       | 22,827  | 0       | 0        | 0        | 0         | 22,827        | 23,828            |
| Calculation       | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 4,331,181,398 | Volume x distance |
| Actual Demand     | 302,811 | 193,609 | 106,474  | 54,788   | 14,707    | 672,389       |                   |

Nm<sup>3</sup> = normal cubic metre.

Note: The reduction ratio of the objective function compared to Table 3.5 is 0.00%.

Source: Authors' calculations

#### 4.2. Optimisation of Hydrogen Transport Costs

If the optimal calculation results in regard to the transport mode of hydrogen are analysed, Australia exports its hydrogen to Japan through liquefied hydrogen, and Brunei Darussalam exports its hydrogen to Japan and Thailand by MCH. Sarawak, Malaysia exports its hydrogen to Peninsular Malaysia and Thailand by MCH. Indonesia exports to Korea, Peninsular Malaysia, and Singapore by MCH. New Zealand exports its hydrogen to Korea by liquefied hydrogen. Japan and Korea import hydrogen from Brunei Darussalam and Indonesia by MCH, but this can be replaced by liquefied hydrogen, because the cost difference is negligible.

A sensitivity analysis was then conducted in which each hydrogen-producing country increases its hydrogen production by 1 billion Nm<sup>3</sup>. There is no effect for Australia, because hydrogen demand in Japan remains unchanged. Brunei Darussalam only increases its hydrogen exports to Japan by 1 billion Nm<sup>3</sup>. Sarawak, Malaysia increases its hydrogen exports to Thailand by 1 billion Nm<sup>3</sup>, altering Brunei Darussalam's exports by decreasing them to Thailand and increasing them to Japan.

A change in New Zealand's production brings more complicated changes to the hydrogen supply chain. This increases exports to Korea; as a result, Indonesia decreases exports to Korea and increases exports to Peninsular Malaysia. Sarawak, Malaysia thus decreases hydrogen transport to Peninsular Malaysia, thus increasing exports to Thailand. Finally, Brunei Darussalam's exports to Thailand decrease, but they increase to Japan. Regarding the impact to the reduction of the objective function, Brunei Darussalam has the highest at 0.05%, followed by Sarawak, Malaysia at 0.04% and Indonesia at 0.03%. Cost reduction effects are not significant.

|                      | Jap    | ban             | Kore    | ea              | Malays          | ia              | Thaila | nd              | Singapore  |                 | Total Supply | Supply     |
|----------------------|--------|-----------------|---------|-----------------|-----------------|-----------------|--------|-----------------|------------|-----------------|--------------|------------|
|                      | MCH    | LH <sub>2</sub> | MCH     | LH <sub>2</sub> | МСН             | LH <sub>2</sub> | MCH    | LH <sub>2</sub> | МСН        | LH <sub>2</sub> |              | Constraint |
| Australia            | 0      | 284,313         | 0       | 0               | 0               | 0               | 0      | 0               | 0          | 0               | 284,313      | 284,313    |
| Brunei<br>Darussalam | 18,498 | 0               | 0       | 0               | 0               | 0               | 8,480  | 0               | 0          | 0               | 26,979       | 26,979     |
| Malaysia             | 0      | 0               | 0       | 0               | 82 <i>,</i> 359 | 0               | 46,308 | 0               | 0          | 0               | 128,667      | 128,667    |
| Indonesia            | 0      | 0               | 170,781 | 0               | 24,115          | 0               | 0      | 0               | 14,707     | 0               | 209,603      | 209,603    |
| New Zealand          | 0      | 0               | 0       | 22,828          | 0               | 0               | 0      | 0               | 0          | 0               | 22,828       | 22,828     |
|                      |        |                 |         |                 |                 |                 |        | Tota            | l Transpor | t Cost          | 1,220,485    | Total      |
| Total Result         | 18,498 | 284,313         | 170,781 | 22,828          | 106,474         | 0               | 54,788 | 0               | 14,707     | 0               | 672,389      | 672,389    |
| Total Demand         |        | 302,811         |         | 193,609         | 10              | 6,474           | 5      | 4,788           | 1          | 4,707           | 672,389      | 12,205     |

#### Table 3.11. Optimal Solution of Transport Cost Model (million Nm<sup>3</sup>)

 $L_2$  = liquefied hydrogen, MCH = methylcyclohexane, Nm<sup>3</sup> = normal cubic metre. Source: Authors' calculations.

|                      | Jap    | an              | Kore    | ea      | Malays  | ia              | Thailand Singapore |                 | Total Supply | Supply          |           |            |
|----------------------|--------|-----------------|---------|---------|---------|-----------------|--------------------|-----------------|--------------|-----------------|-----------|------------|
|                      | MCH    | LH <sub>2</sub> | MCH     | LH₂     | МСН     | LH <sub>2</sub> | МСН                | LH <sub>2</sub> | МСН          | LH <sub>2</sub> |           | Constraint |
| Australia            | 0      | 284,313         | 0       | 0       | 0       | 0               | 0                  | 0               | 0            | 0               | 284,313   | 285,313    |
| Brunei<br>Darussalam | 18,498 | 0               | 0       | 0       | 0       | 0               | 8,480              | 0               | 0            | 0               | 26,979    | 26,979     |
| Malaysia             | 0      | 0               | 0       | 0       | 82,359  | 0               | 46,308             | 0               | 0            | 0               | 128,667   | 128,667    |
| Indonesia            | 0      | 0               | 170,781 | 0       | 24,115  | 0               | 0                  | 0               | 14,707       | 0               | 209,603   | 209,603    |
| New Zealand          | 0      | 0               | 0       | 22,828  | 0       | 0               | 0                  | 0               | 0            | 0               | 22,828    | 22,828     |
|                      |        |                 |         |         |         |                 |                    | Tota            | l Transpor   | t Cost          | 1,220,485 | Total      |
| Total Result         | 18,498 | 284,313         | 170,781 | 22,828  | 106,474 | 0               | 54,788             | 0               | 14,707       | 0               | 672,389   | 673,389    |
| Total Demand         |        | 302,811         |         | 193,609 | 10      | 6,474           | 5                  | 4,788           | 1            | 4,707           | 672,389   | 12,205     |

#### Table 3.12. Australia's Increase of 1 Billion Nm3 of Hydrogen Production (million Nm<sup>3</sup>)

 $L_2$  = liquefied hydrogen, MCH = methylcyclohexane, Nm<sup>3</sup> = normal cubic metre.

Note: The reduction ratio of the objective function compared to Table 3.11 is -0.05%. Source: Authors' calculations.

|              | Japan  |                 | Korea   |                 | Malaysia |                 | Thailand             |                 | Singapore |                 | Total Supply | Supply     |
|--------------|--------|-----------------|---------|-----------------|----------|-----------------|----------------------|-----------------|-----------|-----------------|--------------|------------|
|              | MCH    | LH <sub>2</sub> | МСН     | LH <sub>2</sub> | МСН      | LH <sub>2</sub> | MCH                  | LH <sub>2</sub> | MCH       | LH <sub>2</sub> |              | Constraint |
| Australia    | 0      | 283,313         | 0       | 0               | 0        | 0               | 0                    | 0               | 0         | 0               | 283,313      | 285,313    |
| Brunei       | 19,499 | 0               | 0       | 0               | 0        | 0               | 8,480                | 0               | 0         | 0               | 27,979       | 27,979     |
| Darussalam   |        |                 |         |                 |          |                 |                      |                 |           |                 |              |            |
| Malaysia     | 0      | 0               | 0       | 0               | 82,359   | 0               | 46,308               | 0               | 0         | 0               | 128,667      | 128,667    |
| Indonesia    | 0      | 0               | 170,781 | 0               | 24,115   | 0               | 0                    | 0               | 14,707    | 0               | 209,603      | 209,603    |
| New Zealand  | 0      | 0               | 0       | 22,828          | 0        | 0               | 0                    | 0               | 0         | 0               | 22,828       | 22,828     |
|              |        |                 |         |                 |          |                 | Total Transport Cost |                 | 1,219,931 | Total           |              |            |
| Total Result | 19,499 | 283,312         | 170,781 | 22,828          | 106,474  | 0               | 54,788               | 0               | 14,707    | 0               | 672,389      | 673,390    |
| Total Demand |        | 302,811         |         | 193,609         | 10       | 6,474           | 5                    | 4,788           | 1         | 4,707           | 672,389      | 12,199     |

# Table 3.13. Brunei Darussalam's Increase of 1 Billion Nm³ of Hydrogen Production(million Nm³)

 $L_2$  = liquefied hydrogen, MCH = methylcyclohexane, Nm<sup>3</sup> = normal cubic metre.

Note: The reduction ratio of the objective function compared to Table 3.11 is -0.05%. Source: Authors' calculations.

|              | Japan  |                 | Korea   |                 | Malays  | Malaysia        |        | Thailand        |            | ore             | Total Supply | Supply     |
|--------------|--------|-----------------|---------|-----------------|---------|-----------------|--------|-----------------|------------|-----------------|--------------|------------|
|              | MCH    | LH <sub>2</sub> | MCH     | LH <sub>2</sub> | MCH     | LH <sub>2</sub> | МСН    | LH <sub>2</sub> | MCH        | LH <sub>2</sub> |              | Constraint |
| Australia    | 0      | 283,312         | 0       | 0               | 0       | 0               | 0      | 0               | 0          | 0               | 283,312      | 284,313    |
| Brunei       | 19,499 | 0               | 0       | 0               | 0       | 0               | 7,480  | 0               | 0          | 0               | 26,979       | 26,979     |
| Darussalam   |        |                 |         |                 |         |                 |        |                 |            |                 |              |            |
| Malaysia     | 0      | 0               | 0       | 0               | 82,359  | 0               | 47,308 | 0               | 0          | 0               | 129,667      | 129,667    |
| Indonesia    | 0      | 0               | 170,781 | 0               | 24,115  | 0               | 0      | 0               | 14,707     | 0               | 209,603      | 209,603    |
| New Zealand  | 0      | 0               | 0       | 22,828          | 0       | 0               | 0      | 0               | 0          | 0               | 22,828       | 22,828     |
|              |        |                 |         |                 |         |                 |        | Tota            | l Transpor | t Cost          | 1,220,056    | Total      |
| Total Result | 19,499 | 283,312         | 170,781 | 22,828          | 106,474 | 0               | 54,788 | 0               | 14,707     | 0               | 672,389      | 673,390    |
| Total Demand |        | 302,811         |         | 193,609         | 10      | 6,474           | 5      | 4,788           | 1          | 4,707           | 672,389      | 12,201     |

#### Table 3.14. Malaysia's Increase of 1 Billion Nm<sup>3</sup> of Hydrogen Production (million Nm<sup>3</sup>)

 $L_2$  = liquefied hydrogen, MCH = methylcyclohexane, Nm<sup>3</sup> = normal cubic metre.

Note: The reduction ratio of the objective function compared to Table 3.11 is -0.04%.

Source: Authors' calculations.

|                      | Japan  |                 | Korea   |                 | Malaysia |                 | Thailand             |                 | Singapore |                 | Total Supply | Supply     |
|----------------------|--------|-----------------|---------|-----------------|----------|-----------------|----------------------|-----------------|-----------|-----------------|--------------|------------|
|                      | MCH    | LH <sub>2</sub> | MCH     | LH <sub>2</sub> | МСН      | LH <sub>2</sub> | МСН                  | LH <sub>2</sub> | МСН       | LH <sub>2</sub> |              | Constraint |
| Australia            | 0      | 283,312         | 0       | 0               | 0        | 0               | 0                    | 0               | 0         | 0               | 283,312      | 284,313    |
| Brunei<br>Darussalam | 19,499 | 0               | 0       | 0               | 0        | 0               | 7,480                | 0               | 0         | 0               | 26,979       | 26,979     |
| Malaysia             | 0      | 0               | 0       | 0               | 81,359   | 0               | 47,308               | 0               | 0         | 0               | 128,667      | 128,667    |
| Indonesia            | 0      | 0               | 170,781 | 0               | 25,115   | 0               | 0                    | 0               | 14,707    | 0               | 210,603      | 210,603    |
| New Zealand          | 0      | 0               | 0       | 22,828          | 0        | 0               | 0                    | 0               | 0         | 0               | 22,828       | 22,828     |
|                      |        |                 |         |                 |          |                 | Total Transport Cost |                 | 1,220,152 | Total           |              |            |
| Total Result         | 19,499 | 283,312         | 170,781 | 22,828          | 106,474  | 0               | 54,788               | 0               | 14,707    | 0               | 672,389      | 673,390    |
| Total Demand         |        | 302,811         |         | 193,609         | 10       | 6,474           | 5                    | 4,788           | 1         | 4,707           | 672,389      | 12,202     |

# Table 3.15. Indonesia's Increase of 1 Billion Nm<sup>3</sup> of Hydrogen Production (million Nm<sup>3</sup>)

 $L_2$  = liquefied hydrogen, MCH = methylcyclohexane, Nm<sup>3</sup> = normal cubic metre.

Note: The reduction ratio of the objective function compared to Table 3.11 is -0.03%. Source: Authors' calculations.

|                      | Japan  |                 | Korea   |                 | Malays  | Malaysia        |                      | Thailand        |        | ore             | Total Supply | Supply     |
|----------------------|--------|-----------------|---------|-----------------|---------|-----------------|----------------------|-----------------|--------|-----------------|--------------|------------|
|                      | MCH    | LH <sub>2</sub> | MCH     | LH <sub>2</sub> | MCH     | LH <sub>2</sub> | МСН                  | LH <sub>2</sub> | МСН    | LH <sub>2</sub> |              | Constraint |
| Australia            | 0      | 283,312         | 0       | 0               | 0       | 0               | 0                    | 0               | 0      | 0               | 283,312      | 284,313    |
| Brunei<br>Darussalam | 19,499 | 0               | 0       | 0               | 0       | 0               | 7,480                | 0               | 0      | 0               | 26,979       | 26,979     |
| Malaysia             | 0      | 0               | 0       | 0               | 81,359  | 0               | 47,308               | 0               | 0      | 0               | 128,667      | 128,667    |
| Indonesia            | 0      | 0               | 169,781 | 0               | 25,115  | 0               | 0                    | 0               | 14,707 | 0               | 209,603      | 209,603    |
| New Zealand          | 0      | 0               | 0       | 23,828          | 0       | 0               | 0                    | 0               | 0      | 0               | 23,828       | 23,828     |
|                      |        |                 |         |                 |         |                 | Total Transport Cost |                 | t Cost | 1,220,371       | Total        |            |
| Total Result         | 19,499 | 283,312         | 169,781 | 23,828          | 106,474 | 0               | 54,788               | 0               | 14,707 | 0               | 672,389      | 673,390    |
| Total Demand         |        | 302,811         |         | 193,609         | 10      | 6,474           | 5                    | 4,788           | 1      | 4,707           | 672,389      | 12,204     |

 

 Table 3.16. New Zealand's Increase of 1 Billion Nm<sup>3</sup> of Hydrogen Production (million Nm<sup>3</sup>)

 $L_2$  = liquefied hydrogen, MCH = methylcyclohexane, Nm<sup>3</sup> = normal cubic metre. Note: The reduction ratio of the objective function compared to Table 3.11 is -0.01%. Source: Authors' calculations.

#### 5. Implications

Hydrogen is a future clean combustion fuel that can replace fossil fuels, which are used for heat and fuel demand in industry, transport, and power generation. However, hydrogen supply costs are currently expensive; these must be reduced through the expansion of hydrogen demand (i.e. scale merit). In addition, the development of innovative hydrogen production and transport technologies will help reduce hydrogen supply costs.

A hydrogen value chain – to connect both hydrogen production and demand sites – must be established. As mentioned, two hydrogen transport modes are available, MCH and liquefied hydrogen. Generally, MCH has an advantage in short and middle distances and small and mid-volumes. Yet liquefied hydrogen has advantages with middle to long distances and mid-to large volumes. The linear programming model shows similar results; if Australia and New Zealand transport their hydrogen to Japan and Korea, a hydrogen supply network can be established within ASEAN. Brunei Darussalam and Indonesia can still transport their hydrogen.

These results depend on assumed hydrogen transport costs, which are based on distance and volume. Appropriate hydrogen transport costs of both transport modes were assumed, but there were many uncertainties. Therefore, the hydrogen transport costs must be further examined to obtain more reliable numbers.

In addition, this study did not include hydrogen production costs before and after treatment of MCH and liquefied hydrogen, which are hydrogenation and dehydrogenation of MCH, and liquefaction and regasification of liquefied hydrogen.