List of Figures

Figure 2.1	Cost of Large-Scale Hydrogen Production	4
Figure 2.2	Distribution of Coal Reserves in Indonesia, October 2018	5
Figure 2.3	Routine Gas Flares Worldwide, 2020	ç
Figure 3.1	Hydrogen Optimisation – Linear Programming Model	21
Figure 3.2	Unit Cost of Hydrogen Transport, Methylcyclohexane	24
Figure 3.3	Unit Cost of Hydrogen Transport, Liquefied Hydrogen	24
Figure 4.1	Methylcyclohexane Hydrogen Supply Chain	50
Figure 4.2	Well-to-Tank Carbon Dioxide Emissions	52
Figure 4.3	Pilot Demonstration Structure between Australia and Japan	53
Figure 4.4	Share of Power Generation Carbon Dioxide Reduction Forecast	54

List of Tables

Table 2.1	Hydrogen Production Technologies	3
Table 2.2	Low-Rank Coal Reserves in the East Asia Summit Region	5
Table 2.3	Low-Rank Coal Reserves	6
Table 2.4	Available Amount of Low-Rank Coal Reserves for Producing Hydrogen	7
Table 2.5	Hydrogen Production Potential from Low-Rank Coal	8
Table 2.6	Amount of Flared Gas, East Asian Summit Region	10
Table 2.7	Amount of Flared Gas and Ratio of Oil in the East Asia Summit Region	11
Table 2.8	Hydrogen Production Potential from Flared Gas, East Asia Summit Region	12
Table 2.9	Carbon Dioxide Emissions from Feedstock Consumption and Carbon Capture and Storage Potential	13
Table 2.10	Hydropower Resources in the East Asia Summit Region	14
Table 2.11	Hydropower Resources in Indonesia by Region	14
Table 2.12	Hydropower Development Prospects for Electricity Generation, Selected Areas	15
Table 2.13	Remaining Hydropower Resources for Producing Hydrogen, East Asia Summit Region	16
Table 2.14	Hydrogen-Producing Potential from Untapped Resources, East Asia Summit Region	17
Table 2.15	Hydrogen-Producing Potential from Unused Energies, East Asia Summit Region	18
Table 2.16	Hydrogen-Producing Potential from Unused Energies	19
Table 3.1	Supply Amount of Hydrogen	22
Table 3.2	Demand Amount for Hydrogen	23
Table 3.3	Distances between Hydrogen Supply and Demand Places	23
Table 3.4	Unit Cost of Hydrogen Transport between Shipping and Receiving Ports	26
Table 3.5	Optimal Hydrogen Transport Solution	28
Table 3.6	Australia's Increase of 1 Billion Nm ³ of Hydrogen Production	28

Table 3.7	Brunei Darussalam's Increase of 1 Billion Nm³ of Hydrogen Production	29
Table 3.8	Sarawak, Malaysia's Increase of 1 Billion Nm³ of Hydrogen Production	29
Table 3.9	Indonesia's Increase of 1 Billion Nm³ of Hydrogen Production	30
Table 3.10	New Zealand's Increase of 1 Billion Nm³ of Hydrogen Production	30
Table 3.11	Optimal Solution of Transport Cost Model	32
Table 3.12	Australia's Increase of 1 Billion Nm3 of Hydrogen Production	33
Table 3.13	Brunei Darussalam's Increase of 1 Billion Nm³ of Hydrogen Production	34
Table 3.14	Malaysia's Increase of 1 Billion Nm³ of Hydrogen Production	35
Table 3.15	Indonesia's Increase of 1 Billion Nm³ of Hydrogen Production	36
Table 3.16	New Zealand's Increase of 1 Billion Nm³ of Hydrogen Production	37
Table 4.1	Carbon Dioxide Emissions from Lignite and Potential of Carbon Capture and Storage, Selected Countries	47
Table 4.2	Country Updates from ASEAN+ Representatives	55