List of Figures

Figure 1.1	Global Electric Passenger Car Stock	2
Figure 1.2	Fuel Share in Electricity Generation in Lao PDR	5
Figure 1.3	Estimated Number of Motorbikes	8
Figure 1.4	Estimated Number of Cars	9
Figure 1.5	Estimated Number of Trucks and Buses	9
Figure 1.6	Gasoline and Diesel Consumption of Road Transport Vehicles – BAU Scenario	12
Figure 1.7	Gasoline Consumption by Scenarios	13
Figure 1.8	Gasoline Saving by Electric Vehicle Scenarios	13
Figure 1.9	Diesel Fuel Consumption by Scenarios	14
Figure 1.10	Diesel Fuel Saving by Electric Vehicle Scenarios	15
Figure 1.11	Electricity Consumption of Road Transport Electric Vehicles	15
Figure 2.1	Units of PEV per Public Charger in EAFO Countries	26
Figure 2.2	Flowchart of Public Charging Supply-Cost Model	30
Figure 2.3	Electricity Demand of Road Transport Vehicles in EV10 Scenario	33
Figure 2.4	Electricity Demand of Road Transport Vehicles in EV30 Scenario	33
Figure 2.5	Electricity Demand of Road Transport Vehicles in EV50 Scenario	34
Figure 2.6	Charging Behaviour Assumption	35
Figure 2.7	Electricity Demand by Charger Type in EV10 Scenario	35
Figure 2.8	Electricity Demand by Charger Type in EV30 Scenario	36
Figure 2.9	Electricity Demand by Charger Type in EV50 Scenario	36
Figure 2.10	Number of Public Chargers – EV10 Scenario – Energy Use Ratio Assumption 1	39
Figure 2.11	Number of Public Chargers – EV30 Scenario – Energy Use Ratio Assumption 1	39

Figure 2.12	Number of Public Chargers – EV50 Scenario – Energy Use Ratio Assumption 1	40
Figure 2.13	Number of Public Chargers – EV10 Scenario – Energy Use Ratio Assumption 2	41
Figure 2.14	Number of Public Chargers – EV30 Scenario – Energy Use Ratio Assumption 2	41
Figure 2.15	Number of Public Chargers – EV50 Scenario – Energy Use Ratio Assumption 2	42
Figure 2.16	Two Indicators of Charging Infrastructure	43
Figure 2.17	Accumulative Cost–Energy Ratio Assumption 1	44
Figure 2.18	Accumulative Cost–Energy Ratio Assumption 2	45
Figure 3.1	Changes in Energy Demand by Penetration of EVs in 2040 (ktoe)	53
Figure 3.2	Comparison of TFEC Between BAU and EV 50% in 2040	58
Figure 3.3	Impact on TPES by EV Penetration in 2040	59
Figure 3.4	Comparison of CO ₂ Emissions among Four Cases in 2040	60
Figure 3.5	Domestic Energy Dependency Ratio of the Three Cases	61
Figure 4.1	Demand for Gasoline and Diesel Oil in 2040 for Transportation (1,000 kl)	64
Figure 4.2	Import Value of Gasoline and Diesel Oil by EV Penetration in 2040 (\$1,000)	66
Figure 4.3	Decreased Import Value of Gasoline and Diesel Oil in 2040 with BAU (\$1,000)	67
Figure 4.4	Government Revenue in 2040 by EV Penetration Scenario (\$1,000)	68
Figure 4.5	Decrease of Government Revenue Compared with BAU Case	69
Figure 4.6	Sales Amount in 2015 and 2040 (\$1,000)	69
Figure 4.7	Decreased Sales Amount Compared with BAU Case (\$1,000)	70
Figure 4.8	Relation Between Number of Service Stations and Demand	71
Figure 4.9	Estimation of Number of Service Stations in 2040 by EV Penetration	71

Figure 4.10	Trend in Number of Service Stations, 2015-2040	72
Figure 4.11	Estimation of Number of Employees in Oil Industry	73
Figure 4.12	Decrease in Number of Employees Compared with BAU Case	73
Figure 4.13	Demand for Gasoline and Diesel Oil in 2040 by EV Penetration Scenario (1,000 kl)	75
Figure 5.1	Changes in Electricity Consumption in Lao PDR	76
Figure 5.2	Changes in Peak Demand in Lao PDR	77
Figure 5.3	Power Demand Profile of Daily Peaks in 2019 and 2020	78
Figure 5.4	Installed Capacity Portfolio in Lao PDR (as of 2020)	79
Figure 5.5	Installed Capacity Portfolio for Domestic Use in Lao PDR (as of 2020)	79
Figure 5.6	Power Grid Map in Lao PDR	82
Figure 5.7	Electricity Consumption Forecast up to 2040	83
Figure 5.8	Peak Demand Forecast up to 2040	84
Figure 5.9	Assumed Charging Power Demand Profile	88
Figure 5.10	Charging Power Demand Profile in 2030	89
Figure 5.11	Charging Power Demand Profile in 2040	89
Figure 5.12	Conceptual Diagram of Current/Monthly Demand/Supply Balance in Lao PDR	92
Figure 5.13	Total Installed Cost Ranges and Capacity Weighted Averages for Large Hydropower Projects by Country/Region	96
Figure 5.14	Utility-scale Solar PV Total Installed Costs by Country (as of 2019)	96
Figure 5.15	Installed Capacity of Case 1 of Domestic Use in 2040	100
Figure 5.16	Installed Capacity of Case 1 of Whole Country in 2040	100
Figure 5.17	Installed Capacity of Case 2 of Domestic Use in 2040	101
Figure 5.18	Installed Capacity of Case 2 of Whole Country in 2040	101
Figure 5.19	Daily Power Demand Profile in TEPCO Area on 17 August 2020	106
Figure 5.20	Trend in Coal Prices	114