# Chapter **4**

### **Selection of LNG Receiving Ports**

January 2021

### This chapter should be cited as

ERIA (2021), 'Selection of LNG Receiving Ports', in Kimura, S., et al. (eds.), *Feasible Solutions* to Deliver LNG to Midsized and Large Islands in Indonesia. ERIA Research Project Report FY2020 no.18, Jakarta: ERIA, pp.22-30.

## Chapter 4 Selection of LNG Receiving Ports

In this chapter, we proposed the locations of LNG receiving ports by using a methodology that considers several factors. First, we looked at the forecasted LNG demand in Eastern Indonesia as estimated in chapter 3. Second, in each region we gathered all seaports that are geographically close to the existing or planned-to-be-developed natural gas—fired or dualengine power plants. Third, we gathered information on the profile of those seaports. Finally, considering the specifications of the model LNG carrier vessels, we selected several seaports as LNG receiving ports based on the accessibility of those seaports.

In section 4.1, we presented the initial candidates for LNG receiving terminals (ports) based on the location of the existing seaports, the forecasted LNG demand and the existing and planned GPPs. In section 4.2, we selected LNG carrier vessels and presented their characteristics. Finally, in section 4.3, we presented the selected receiving ports based on their accessibility for the model ships.

### 1. Regions and the Potential LNG Receiving Ports

Chapter 3 identified 21 regions that include cities and small islands where potential LNG demand for power generation would likely be generated in the future, i.e. in the 2040 horizon. Table 4.1 summarises the results of demand forecasting, the potential seaports, the existing and planned gas-fired and dual-engine power plants, and the installed or planned to-be-installed power generation capacity.

The existing seaports were selected as potential LNG receiving ports or terminals since they are currently serving the corresponding city or island as maritime ports. We also identified the existence of gas-fired and/or dual-engine power plants and/or plans to build and operate them in the near future. Several regions – South Halmahera, Flores Island, and North Sulawesi – have more than one potential seaport to serve as LNG receivers.

|                |              |           |           | Existing and           | Installed or To- |  |
|----------------|--------------|-----------|-----------|------------------------|------------------|--|
|                | Estimated LN | IG Demand |           | Planned Gas-           | Be-Installed     |  |
| Location       |              |           | Seaports  | Fired and Dual-        | Capacity         |  |
|                |              |           |           | Engine Power           |                  |  |
|                | 2030         | 2040      |           | Plants                 | wegawatt (www)   |  |
| Center         | 1.87         | 2.27      | Palu -    | PLTG Palu (KEK -       | 200              |  |
| Sulawesi       |              |           | Pantoloan | Special Economic       |                  |  |
|                |              |           |           | Region/ <i>Kawasan</i> |                  |  |
|                |              |           |           | Ekonomi Khusus)        |                  |  |
| South          | 4.22         | 8.44      | Makassar  | PLTG Makassar          | 450              |  |
| Sulawesi       |              |           | New Port  | Peaker –               |                  |  |
|                |              |           |           | Tamalanrea             |                  |  |
| North          |              |           | Bitung    |                        |                  |  |
| Sulawesi       |              |           |           |                        |                  |  |
|                |              |           | Manado    |                        |                  |  |
| Bali           | 0.91         | 2.75      | Benoa     | PLTDG                  | 200              |  |
|                |              |           |           | Pesanggaran            |                  |  |
| Lombok, West   | 0.58         | 0.82      | Lembar -  | PLTG MPP               | 50               |  |
| Nusa           |              |           | Mataram,  | Jeranjang Lombok       |                  |  |
| Tenggara       |              |           | West      |                        |                  |  |
|                |              |           | Lombok    |                        |                  |  |
| Sumbawa,       | 0.31         | 0.41      | Badas -   | PLTMG Sumbawa          | 50               |  |
| West Nusa      |              |           | Sumbawa   | - Labuan Badas         |                  |  |
| Tenggara       |              |           |           |                        |                  |  |
| Flores, East   | 0.15         | 0.28      | Labuhan   | MPP Flores -           | 20               |  |
| Nusa           |              |           | Вајо      | Manggarai Barat        |                  |  |
| Tenggara       |              |           |           |                        |                  |  |
|                |              |           | Maumere   | PLTMG Maumere          | 40               |  |
|                |              |           |           | - Sikka                |                  |  |
| Kupang, East   | 0.09         | 0.21      | Tenau -   | PLTMG Kupang           | 40               |  |
| Nusa           |              |           | Kupang    | Peaker - Lifuleo       |                  |  |
| Tenggara       |              |           |           | (2018)                 |                  |  |
| Buru Island,   | 0.08         | 0.10      | Namlea    | PLTMG Namlea           | 10               |  |
| Maluku         |              |           |           | (2020)                 |                  |  |
| Ambon,         | 0.09         | 0.12      | Ambon     | PLTMG Ambon            | 30+70            |  |
| Maluku         |              |           |           | Peaker - Waai          |                  |  |
|                |              |           |           | (2020)                 |                  |  |
| Halmahera      | 1.48         | 1.55      | Tobelo    | PLTMG Mamuya           | 30               |  |
| (South), North |              |           |           | Galela                 |                  |  |
| Maluku         |              |           |           |                        |                  |  |

# Table 4.1: Regions, Forecasted LNG Demand, Potential Seaports, and Natural Gas–Fired Power Plants

|                |      |      | Tapaleo   | PLTG Halmahera | 80 |
|----------------|------|------|-----------|----------------|----|
|                |      |      |           | Timur          |    |
| Ternate,       | 0.44 | 0.47 | Ternate   | PLTMG Ternate  | 30 |
| North Maluku   |      |      | Kota Baru | Kastela        |    |
| Yapen Island   | 0.02 | 0.05 | Serui     | PLTMG Serui    | 10 |
| (Serui), Papua |      |      |           |                |    |
| Biak, Papua    | 0.04 | 0.07 | Biak      | PLTMG Biak     | 35 |
|                |      |      |           | (2018)         |    |
|                |      |      |           | PLTMG Biak 2   | 20 |
|                |      |      |           | (2019)         |    |
| Merauke,       | 0.05 | 0.11 | Merauke   | PLTMG Merauke  | 20 |
| Papua          |      |      |           | Karang Indah   |    |
| Jayapura,      | 0.02 | 0.09 | Jayapura  | MPP Jayapura   | 50 |
| Papua          |      |      |           | (2017)         |    |
|                |      |      |           | PLTMG Jayapura | 40 |
|                |      |      |           | Peaker (2019)  |    |
|                |      |      |           | PLTMG Jayapura | 50 |
|                |      |      |           | (2020)         |    |
| Manokwari,     | 0.15 | 0.19 | Manokwa   | MPP Manokwari  | 20 |
| West Papua     |      |      | ri        | (2018)         |    |
|                |      |      |           | PLTMG          | 20 |
|                |      |      |           | Manokwari      |    |
|                |      |      |           | (2019)         |    |
|                |      |      |           | PLTMG          | 20 |
|                |      |      |           | Manokwari      |    |
|                |      |      |           | (2019)         |    |
| Sorong, West   | 0.25 | 0.30 | Sorong    | PLTG Sorong    | 30 |
| Рариа          |      |      |           | (2018)         |    |
|                |      |      |           | PLTG Sorong    | 20 |
|                |      |      |           | (2019)         |    |
|                |      |      |           | PLTMG Sorong   | 50 |
|                |      |      |           | (2025)         |    |

PLTG = gas-fired power plant, PLTMG = gas engine power plant, PLTDG = diesel and gas power plant, MPP = mobile power plant. Source: Authors' estimation and calculation.

### 2. Small-Scale LNG Carrier Vessels

DNV-GL (2019) listed 96 small-scale LNG carrier vessels. From the different vessel information database available on the Internet<sup>2</sup>, we collected information on the tanker size of 67 ships amongst the active ships. The maximum tanker size of the 67 ships is 36,000 cubic metres (CBM). We grouped the ships into four classes according to tanker size:

- Under 10,000 CBM
- 10,001–20,000 CBM
- 20,001–30,000 CBM
- 30,001–40,000 CBM

It appears that vessels with tanker size under 10,000 CBM make more than half of the total small-scale LNG fleet in the world and the percentage seems to decrease with tanker size (Figure 4.1).



Figure 4.1: Share of Small-Scale LNG Carrier Vessels According to Tanker Size

Source: Authors' calculation.

For each tanker size class, we selected one model vessel and assumed that their characteristics represent those of ships in the class.

Table 4.2 presents the five vessel-models based on four real LNG carrier ships.

<sup>&</sup>lt;sup>2</sup> Most of the information were gathered from <u>www.marinetraffic.com</u> and www.vesselfinder.com.

| LNG Carrier<br>Name | LNG<br>Storage<br>Cap | Length<br>Overall<br>(LOA) | Breadth   | Gross<br>Tonnage | (Summer)<br>DWT | Draught   | Average<br>Speed | Maximum<br>Speed | Minimum<br>Depth in<br>Wharf |
|---------------------|-----------------------|----------------------------|-----------|------------------|-----------------|-----------|------------------|------------------|------------------------------|
|                     | CBM                   | Metre (m)                  | Metre (m) | Tonne            | Tonne           | Metre (m) | Knots            | Knots            | Metre (m)                    |
| Engie               | 5,000                 | 107.60                     | 18.4      | 7,403            | 3,121           | 4.80      | 9.66             | 11.52            | 5.28                         |
| Zeebrugge           |                       |                            |           |                  |                 |           |                  |                  |                              |
| Aman Hakata         | 18,000                | 130.00                     | 25.7      | 16,336           | 10,951          | 5.50      | 9.96             | 11.57            | 6.05                         |
| JS Ineos            | 27,500                | 180.30                     | 26.6      | 22,887           | 20,916          | 8.00      | 13.23            | 15.29            | 8.80                         |
| Independence        |                       |                            |           |                  |                 |           |                  |                  |                              |
| Navigator           | 35,000                | 179.89                     | 29.6      | 27,546           | 27,014          | 9.17      | 13.40            | 14.57            | 10.08                        |
| Nova                |                       |                            |           |                  |                 |           |                  |                  |                              |

Table 4.2: Selected LNG Carrier Model Vessels and their Characteristics

CBM = cubic metre, DWT = deadweight tonnage.

Source: Authors' elaboration from data available at <u>www.marinetraffic.com</u> and <u>www.vesselfinder.com</u>.

### Figure 4.2: Selected Model Vessels



Source: www.marinetraffic.com.

The minimum (water) depth of the wharf in Table 4.2 is the minimum water depth that a seaport needs to have in one of its wharfs so that an LNG carrier vessel can enter the seaport.

Figure 4.3 shows that the water depth at the wharf comprises the ship's maximum draft and under keel clearance (UKC) gross. The UKC gross is a necessary depth from the bottom of the sea that allows for the ship's squat movement whilst providing for headroom like semi-wave height and heeling and a clearance depth. The minimum UKC gross is set at 10% of the maximum ship's draft. The minimum water depth is then calculated as the maximum ship's draft multiplied by a factor of 1.1.



#### Figure 4.3: Under Keel Clearance Concept

Source: Authors' elaboration.

### 3. Proposed LNG Receivers or Seaports

Based on the UKC concept, LNG carrier model vessels' required minimum water depth at the wharf, and the information and data of minimum depth in channel/basin/wharf we received from the Directory General of Seaports of the Ministry of Transportation, we determined the accessibility of each seaport for each LNG vessel. A seaport is accessible by an LNG vessel when the minimum depth of one of its channels, basins, and wharf is bigger than the vessel's required minimum wharf. The results are given in Table 4.3 where we finally selected 20 seaports that should serve as LNG receiving terminals.

| LNG Carrier                               | Shinju<br>Maru       | Engie<br>Zeebrugge                        | Aman<br>Hakata     | JS Ineos<br>Independence | Navigator Nova |   |   |
|-------------------------------------------|----------------------|-------------------------------------------|--------------------|--------------------------|----------------|---|---|
| LNG Stora                                 | 2,513                | 5,000                                     | 18,000             | 27,500                   | 35,000         |   |   |
| Minimum Dept                              | 4.61                 | 5.28                                      | 6.05               | 8.80                     | 10.08          |   |   |
| Port Location                             | Port Name            | Minimum depth-<br>channel/basin/<br>wharf | Port Accessibility |                          |                |   |   |
| Center Sulawesi                           | Palu–<br>Pantoloan   | 9                                         | 1                  | 1                        | 1              | 1 | 0 |
| South Sulawesi                            | Makassar<br>New Port | 16                                        | 1                  | 1                        | 1              | 1 | 1 |
| North Sulawesi                            | Bitung               | 12                                        | 1                  | 1                        | 1              | 1 | 1 |
| Bali                                      | Benoa                | 9                                         | 1                  | 1                        | 1              | 1 | 0 |
| Lombok, West Nusa<br>Tenggara             | Lembar               | 7                                         | 1                  | 1                        | 1              | 0 | 0 |
| Sumbawa, West Nusa<br>Tenggara            | Badas                | 7                                         | 1                  | 1                        | 1              | 0 | 0 |
| Flores (West side), East Nusa<br>Tenggara | Labuhan Bajo         | 10                                        | 1                  | 1                        | 1              | 1 | 0 |
| Kupang, East Nusa Tenggara                | Tenau                | 17                                        | 1                  | 1                        | 1              | 1 | 1 |
| Buru Island, Maluku                       | Namlea               | 8                                         | 1                  | 1                        | 1              | 0 | 0 |
| Ambon, Maluku                             | Ambon                | 25.9                                      | 1                  | 1                        | 1              | 1 | 1 |

 Table 4.3: Selected LNG Receiver Seaports and their Accessibility for LNG Carrier Model Vessels

| Ternate, North Maluku       | Ternate Kota | 12 | 1 | 1 | 1 | 1 | 1 |
|-----------------------------|--------------|----|---|---|---|---|---|
|                             | Baru         |    |   |   |   |   |   |
| Yapen Island (Serui), Papua | Serui        | 10 | 1 | 1 | 1 | 1 | 0 |
| Biak, Papua                 | Biak         | 9  | 1 | 1 | 1 | 1 | 0 |
| Merauke, Papua              | Merauke      | 7  | 1 | 1 | 1 | 0 | 0 |
| Jayapura, Papua             | Jayapura     | 9  | 1 | 1 | 1 | 1 | 0 |
| Manokwari, West Papua       | Manokwari    | 12 | 1 | 1 | 1 | 1 | 1 |
| Sorong City, West Papua     | Sorong       | 15 | 1 | 1 | 1 | 1 | 1 |



Source: Authors' elaboration.