List of Figures

Figure 1.1	Total Primary Energy Supply, by Fuel Type, in Brunei Darussalam	1
Figure 1.2	Total Final Energy Consumption, by Fuel Type, in Brunei Darussalam	2
Figure 1.3	Share of Active Vehicles in Brunei Darussalam	3
Figure 1.4	Active Vehicle Ownership in Brunei Darussalam	3
Figure 1.5	Installed Capacity of National Utilities in Brunei Darussalam	4
Figure 1.6	Electricity Consumption across Demand Sectors in Brunei Darussalam	5
Figure 2.1	Total Primary Energy Supply, by Fuel Type, under BAU (2020–2040)	6
Figure 2.2	Comparison of TPES between BAU and APS (2040)	7
Figure 2.3	Total Final Energy Consumption, by Sector, under BAU (2020–2040)	7
Figure 2.4	Total Final Energy Consumption, by Sector, under APS (2020–2040)	8
Figure 2.5	Comparison of TFEC between BAU and APS (2040)	8
Figure 3.1	Hydrogen Supply and Demand Model in Brunei Darussalam	9
Figure 3.2	Hydrogen Production Potential, by Source	10
Figure 3.3	Hydrogen Production Resources in Brunei Darussalam	11
Figure 3.4	Hydrogen Production Resources from Mid-small Gas Fields	12
Figure 3.5	Brunei–Sabah Basin Undiscovered Gas Fields	13
Figure 3.6	Hydrogen Production Resources from Gas Flaring	14
Figure 3.7	Hydrogen Production Potential of Solar Energy in Brunei Darussalam	15
Figure 3.8	Example of Hydrogen Production Costs, by Each Process	18
Figure 3.9	Hydrogen Production Cost to Feedstock Price	19
Figure 3.10	Transportation Distance in Brunei Darussalam	20
Figure 3.11	Existing Fuel Prices in Brunei Darussalam	20
Figure 3.12	Transportation Model of MCH and CH2 (1,000 Nm3/h-H2)	21
Figure 3.13	Transportation Cost of MCH and CH2 (300 Nm3/h-H2)	22
Figure 3.14	Transportation Cost of MCH and CH2 (1,000 Nm3/h-H2)	22
Figure 3.15	Transportation Cost Components of MCH and CH2 (300 Nm3/h-H2)	23
Figure 3.16	Transportation Cost Components of MCH and CH2 (1,000 Nm3/h-H2)	24
Figure 3.17	Hydrogen Supply System for Power Generation	24
Figure 3.18	Electricity Generation Cost Using H2-GT vs Natural Gas Price	25
Figure 3.19	Key Requirements for Carbon-Free Hydrogen	26

Figure 3.20	Carbon Sequestration Potential	27
Figure 3.21	Carbon Capture and Utilisation Examples	28
Figure 4.1	Historical and Projected Active Vehicle Stock	30
Figure 4.2	Changes in the Scenarios	32
Figure 4.3	Projected Greenhouse Gas Emissions Compared to BAU (2040)	34
Figure 4.4	Potential Crude Oil Export Revenue (2040)	35
Figure 4.5	Projected Greenhouse Gas Emissions Compared to BAU (2040)	38
Figure 4.6	Potential Natural Gas Export Revenue (2040)	39
Figure 5.1	Hydrogen Supply and Demand Balance in 2040	40
Figure 5.2	Figure 5.2: Hydrogen Supply Model: Domestic Hydrogen Supply Chain in Brunei Darussalam	42
Figure 5.3	Hydrogen Supply Model: Global Hydrogen Supply Chain from Brunei Darussalam	43
Figure 5.4	Hydrogen Demand Model: Hydrogen Transportation	44
Figure 5.5	Hydrogen Demand Model: Hydrogen Transportation Model (H2 Refuelling Station)	45
Figure 5.6	Hydrogen Demand Model: Ecotown (Renewable and Hydrogen Energy System)	46
Figure 5.7	Hydrogen Demand Model: Ecotown (Area-based Green Storage System)	46
Figure 5.8	Hydrogen Demand Model: Ecotown (Home Storage System)	47
Figure 5.9	Hydrogen Demand Model: Example Projects	48

List of Tables

Table 1.1	Gas Turbine Models of DES and BPC Systems	5
Table 3.1	Key Assumptions of Each Hydrogen Production Method	16
	Feedstock Prices Applied to Evaluate Hydrogen Cost for Each	
Table 3.2	Production Process	17
Table 3.3	Assumptions for Capacity Factor and CCS Costs	17
Table 4.1	Emission Factors of Gasoline and Diesel Fuels	31
Table 4.2	Global Warming Potential of Greenhouse Gases	31
Table 4.3	BAU and FCV Scenarios Considered for Road Transport	32
Table 4.4	Gasoline, Diesel, and Hydrogen Consumption (2040)	33
Table 4.5	Emission Factors of Natural Gas	36
Table 4.6	BAU and Case Scenarios Considered for the Power Sector	37
Table 4.7	Calorific Percentages of Natural Gas and Hydrogen for Case 1 Scenario	37
Table 4.8	Calorific Percentages of Natural Gas and Hydrogen for Case 2 Scenario	37
Table 4.9	Calorific Percentages of Natural Gas and Hydrogen for Case 3 Scenario	37
Table 4.10	Natural Gas and Hydrogen Consumption (2040)	38
Table 5.1	Hydrogen Penetration Scenario	41