
ERIA Research Project Report FY2025, No. 18 

Enhancing Breast Cancer Detection with 
FxMammo: Results from a Multi-Experience AI 
Evaluation 



Enhancing Breast Cancer Detection with FxMammo: Results from a Multi-Experience 
AI Evaluation 

Economic Research Institute for ASEAN and East Asia (ERIA) 

Sentral Senayan II 6th Floor 

Jalan Asia Afrika No. 8, Gelora Bung Karno 

Senayan, Jakarta Pusat 12710 

Indonesia 

© Economic Research Institute for ASEAN and East Asia, 2025 

ERIA Research Project Report FY2025, No. 18 

Published in August 2025 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted in any form by any means electronic or mechanical without prior 
written notice to and permission from ERIA.  

The findings, interpretations, conclusions, and views expressed in their respective 
chapters are entirely those of the author/s and do not reflect the views and policies of the 
Economic Research Institute for ASEAN and East Asia, its Governing Board, Academic 
Advisory Council or the institutions and governments they represent. Any error in content 
or citation in the respective chapters is the sole responsibility of the authors. 

Material in this publication may be freely quoted or reprinted with proper 
acknowledgement. 

The report is prepared for the Economic Research Institute for ASEAN and East Asia (ERIA) 
by FathomX and supported by Universitas Gadjah Mada, Department of Radiology, Faculty 
of Medicine, Public Health, and Nursing.



iii 

List of Project Members 

FathomX 

Stephen Lim  

Galvin Lian  

Du Hao 

Mikael Hartman 

Feng Mengling  

Abigail Chu 

Universitas Gadjah Mada, Faculty of Medicine, Public Health, and Nursing 

Lina Choridah (Department Radiology) 

Devina Yudistiarta (Department of Radiology) 

Vincent Laiman (Department of Radiology) 

Didik Setyo Hariyanto (Department of Anatomical Pathology) 

Ika Puspitasari (Department of Pharmacy/UGM Academic Hospital)  

Sariningsih Hikmawati (Student, Doctoral Program of Medical and Health Sciences) 

Rozan Muhammad Irfan (Radiology Research and Training Office) 

Zannuba Arifah Noor (Radiology Research and Training Office) 



iv 

Contents

List of Project Members iii 

List of Tables v 

Glossary  vi 

Chapter 1 Introduction 1 

Chapter 2 Research Methodology  5 

Chapter 3 Research Findings 8 

Chapter 4 Policy Recommendation 12 

Chapter 5 Conclusion 15 

References 16 



v 

List of Tables 

Table 3.1 Reader Diagnostic Performance with and without AI 
Assistance 

9 

Table 3.2 The Inter-reader Agreement of Readers’ Diagnostic 
Performance with and without AI Assistance 

11 



vi 

Glossary 

 
Term Definition 

AI (Artificial Intelligence) Simulation of human intelligence by 
machines. In this study, AI assists in 
interpreting mammograms for breast 
cancer detection. 

AUC (Area Under the Curve) Performance metric of classification 
models; higher AUC indicates better 
diagnostic accuracy. 

BI-RADS Breast Imaging Reporting and Data System 
used to classify mammogram findings and 
guide follow-up. 

Blinded Reading Trial Readers interpret images without knowing 
the diagnosis to prevent bias. 

CAD (Computer-Aided Detection) Software aiding radiologists in identifying 
abnormalities on medical images. 
FxMammo is an advanced CAD. 

Confidence Interval (CI) Statistical range indicating the reliability of 
an estimate, e.g. 95% CI. 

Cohen’s Kappa Score Statistic measuring agreement between 
raters, accounting for chance. 

Dense Breast Tissue Breast tissue with more fibroglandular 
elements that obscure tumors on 
mammograms. 

Diagnostic Accuracy Test's ability to correctly identify presence 
and absence of disease. 

Digital Mammography Electronic capture and storage of breast 
images for analysis. 

False Positive A result incorrectly indicating presence of 
disease. 

False Negative A result incorrectly indicating absence of 
disease. 
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Term Definition 

FxMammo FathomX’s deep learning AI system for 
scoring malignancy likelihood in 
mammograms. 

Inter-reader Variability Differences in diagnostic interpretation 
amongst readers. 

McNemar Test Statistical test comparing paired 
proportions (e.g. with and without AI). 

MRMC (Multi-Reader Multi-Case) Study Study with multiple readers and cases 
evaluating diagnostic tools. 

NPV (Negative Predictive Value) Probability that a negative test correctly 
indicates absence of disease. 

PACS Picture Archiving and Communication 
System for storing and sharing medical 
images. 

PPV (Positive Predictive Value) Probability that a positive test correctly 
indicates presence of disease. 

Sensitivity Ability of a test to correctly identify 
individuals with the disease. 

Specificity Ability of a test to correctly identify 
individuals without the disease. 

Triage Tool Tool to prioritise high-risk cases for review, 
used in AI-assisted diagnosis. 

Malignant Describes cells or tumors that are 
cancerous, invasive, and capable of 
spreading to other parts of the body. 

Benign Describes cells or tumors that are non-
cancerous and typically do not spread to 
surrounding tissue or other parts of the 
body. 
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Chapter 1 

Introduction 

1.1. Background 

Breast cancer is a leading cause of cancer mortality worldwide, and early detection 
through screening mammography is critical for improving outcomes (Elhakim et al., 2024; 
Shi et al., 2025). Mammography’s effectiveness, however, depends on its diagnostic 
accuracy, which can vary by region and population. A meta-analysis of studies from North 
America and Europe reported that digital mammography achieves a pooled sensitivity of 
about 76% and specificity of 94%–97% (Shi et al., 2025). In practice, performance ranges 
widely: for example, an Indonesian hospital observed approximately 90.1% sensitivity and 
93.6% specificity for mammography, whereas a study in Pakistan found sensitivity as high 
as 97% but a specificity of only about 64.5% (Lehman et al., 2015). Such variability arises 
from multiple factors, including differences in technology, patient populations, and breast 
composition. Notably, breast density significantly affects mammographic sensitivity – 
dense breast tissue can mask tumors, reducing sensitivity to around 62%–68% in very 
dense breasts compared to 86%–89% in predominantly fatty breasts (Carney et al., 2003; 
Kerlikowske and Phipps, 2011). Dense breasts are more common in younger women and 
certain ethnic groups (including many Asian populations), partly explaining regional 
differences in detection rates (del Carmen et al., 2007). 

In addition to patient factors, there is marked variability in interpretive performance 
amongst radiologists. Studies have documented wide disparities in sensitivity even 
amongst radiologists working under similar conditions (Elmore et al., 2009). This inter-
reader variability means that some cancers go undetected (missed cancers) while some 
patients without cancer undergo unnecessary recall and anxiety due to false-positive 
readings (Elmore et al., 2009). The issue is exacerbated in countries like Indonesia, which 
face a shortage of radiologists, especially those specialising in breast imaging. With 
limited expert manpower, many screening mammograms may be interpreted by general 
radiologists or trainees, potentially increasing variability and diagnostic errors. These 
challenges highlight an urgent need for innovative solutions to support radiologists, 
improve consistency, and maintain high accuracy in breast cancer detection. 

Artificial intelligence (AI) has emerged as a promising adjunct in mammographic 
screening and diagnosis. Modern AI systems, powered by deep learning, can be trained 
on vast collections of mammograms to recognise patterns of malignancy. In recent 
studies, AI algorithms have achieved diagnostic performance on par with, or even 
exceeding that of human radiologists in retrospective settings (Kim et al., 2020). For 
instance, one AI system evaluated on mammography screenings yielded an area under 
the curve (AUC) of 0.94 for cancer detection – significantly higher than the 0.81 AUC of 
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unaided radiologists – and improved radiologists’ performance when used as a second 
reader (Kim et al., 2020). Such results underscore the potential of AI to act as a ‘second 
pair of eyes,’ catching subtle cancers that a human might overlook and reducing variability 
between readers. Notably, variability in human interpretation can be addressed by AI’s 
more consistent analysis: unlike humans, a validated AI algorithm will apply the same 
criteria to every case, which may help standardise readings across different practitioners. 

Recent AI systems using deep learning have shown substantial improvements over legacy 
computer-aided detection (CAD) tools. Several contemporary studies demonstrate that AI 
assistance can boost radiologists’ diagnostic performance. Kim et al., reported that using 
an AI system alongside radiologists increased cancer detection sensitivity by about 9.5% 
and specificity by 2.7% compared to readings without AI (Kim et al., 2020). However, not 
all trials have found a statistically significant impact on performance; some have 
observed that seasoned radiologists’ metrics (sensitivity, specificity) remain similar with 
or without AI support (Pacilè et al., 2020; Dang et al., 2022). These mixed findings suggest 
that AI’s benefit may depend on the context – factors such as the difficulty of cases, the 
experience of the readers, and the specific AI algorithm’s capabilities all influence 
outcomes. Consequently, rigorous evaluation in diverse settings is necessary to ascertain 
where AI can provide the most value in breast imaging. 

Beyond accuracy, AI tools in mammography offer potential workflow and efficiency 
benefits. Radiologists typically must carefully scrutinise each mammogram for subtle 
signs of cancer (e.g. tiny calcifications or faint distortions) – a time-consuming task prone 
to human fatigue. AI can automate the detection of obvious normal cases and flag 
suspicious regions, thus streamlining the reading process. Studies have noted that AI 
support can reduce the time required to search for subtle abnormalities, like 
microcalcifications, by guiding the radiologist’s attention (Lehman et al., 2015). By 
integrating AI, one simulation projected that radiologists’ workload could be reduced by 
over 50% without compromising diagnostic accuracy (Dembrower et al., 2020). In a large 
retrospective analysis of a national screening cohort, researchers found that replacing 
one of two human readers with AI in a double-reading programme could cut the reading 
volume nearly in half while maintaining cancer detection rates (Elha et al., 2024). 
Furthermore, using AI as an autonomous triage tool – where the AI clears obviously 
normal exams and forwards only doubtful or high-risk cases to radiologists – achieved 
almost 50% workload reduction and even slightly improved cancer detection, compared 
to standard double reading (Elhakim et al., 2024). These efficiencies are especially 
relevant for healthcare systems facing high screening volumes and workforce shortages. 
If radiologists can focus their expertise where it’s most needed (on complex cases), and 
let AI handle the straightforward ones, the overall screening programme can run more 
effectively. 

However, integrating AI into clinical practice is not without challenges. One concern is the 
potential over-reliance on AI or automation bias. Radiologists might trust an AI’s judgment 
too much – for example, if the AI fails to mark a cancerous lesion, a human reader could 
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be falsely reassured and also miss it. A recent multi-reader study in a different imaging 
context (chest radiography) found that when an AI system provided incorrect outputs, 
radiologists were more likely to make errors that they would not have made on their own 
(Bernstein, Atalay et al., 2023). In other words, an inaccurate AI suggestion can mislead 
even experienced clinicians, underscoring the need for users to remain vigilant and not 
defer blindly to AI. Ensuring that radiologists are trained to interpret AI results and retain 
their critical judgment is crucial. There are also practical considerations: AI algorithms 
require robust validation on local patient data to ensure their accuracy is generalisable 
across different populations and imaging equipment. Privacy and data security must be 
managed when integrating AI software that often relies on large datasets. Despite these 
challenges, the potential benefits of AI – improved detection, more consistent 
interpretations, and streamlined workflow – make it a compelling area of research and 
implementation in breast cancer screening. This study builds on that context by evaluating 
the effects of the FxMammo AI system (developed by FathomX Pte Ltd) on mammography 
interpretation in a real-world clinical setting with readers of varying experience. 
FathomX’s solution is designed to reduce false negatives and false positives and to 
expedite case reading, which could be particularly advantageous in environments with 
limited expert radiologists. By examining its impact in a controlled study, we aim to 
provide evidence on how such AI can be best utilised to enhance breast cancer detection 
in practice. 

1.2. Research Objective 

The primary objective of this study is to evaluate the diagnostic impact of FxMammo, a 
deep learning-based decision support system developed by FathomX, on breast cancer 
detection in Indonesia. Specifically, the research aims to determine whether the 
integration of FxMammo can enhance radiologists’ diagnostic performance in terms of 
sensitivity, specificity, and overall accuracy when interpreting mammograms. This 
includes assessing how FxMammo influences inter-reader variability and diagnostic 
consistency, particularly in challenging cases such as dense breast tissue and amongst 
less experienced readers. The study further aims to investigate the potential of AI 
assistance to serve as a second reader, effectively supplementing the limited availability 
of specialised radiologists in resource-constrained settings. By doing so, the research 
provides empirical evidence to inform how AI systems can be optimally deployed to 
improve breast cancer screening outcomes in real-world clinical environments. 

1.3. Research Signification 

The significance of this study lies in several key perspectives. First, breast cancer remains 
one of the leading causes of cancer-related deaths in Indonesia, where delayed diagnosis 
is a persistent problem due to limited screening infrastructure and a shortage of 
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specialised radiologists. By demonstrating the practical utility of AI tools like FxMammo 
in a real-world Indonesian setting, this research contributes to the broader conversation 
on digital health equity and capacity building in low-to-middle-income countries (LMICs). 

Second, the findings offer actionable insights for health systems facing similar challenges 
across Southeast Asia and other developing regions. Unlike many previous studies 
conducted in high-resource settings, this study focuses on a population with a higher 
prevalence of dense breast tissue and fewer trained mammographers – factors that 
compound diagnostic complexity. This enhances the external relevance of the findings for 
comparable healthcare environments. 

Finally, the research adds value to the growing body of literature on the clinical integration 
of AI in radiology. It not only quantifies the diagnostic gains from AI assistance but also 
discusses human-AI collaboration dynamics, such as changes in inter-reader agreement 
and the risk of automation bias. Thus, the significance of this work lies in both its clinical 
applicability and its contribution to responsible AI adoption in healthcare. 

 

1.4. Scope and Limitation 

This study focuses on the evaluation of FxMammo’s diagnostic utility in a single-center 
setting at Universitas Gadjah Mada, Indonesia. The study population consists of 500 
retrospectively collected digital mammography cases – 250 confirmed malignant and 250 
benign or normal – representative of real-world clinical distribution in a tertiary hospital. 
The readers include both board-certified radiologists and senior radiology residents, 
offering a range of interpretive expertise. The AI system was assessed under controlled, 
blinded conditions, allowing for robust comparison of performance with and without AI 
support. 

Several limitations should be acknowledged. First, the study is geographically limited to 
Indonesia, which may constrain generalisability to other ASEAN or global populations. 
Although the study highlights the relevance of AI in resource-constrained settings, 
comparative data on radiologist availability across ASEAN countries could further 
strengthen the rationale for site selection. 

Second, the dataset excludes specific subgroups such as patients with prior breast cancer, 
those with breast implants, and mammograms of suboptimal quality. These exclusions, 
while necessary to ensure diagnostic clarity, limit the applicability of findings to more 
complex or post-treatment cases. 

Lastly, while the AI system was evaluated in a simulated screening environment, 
Indonesia currently lacks a national mammography screening programme. Thus, the 
performance outcomes may differ in an organised screening setting. The absence of long-
term follow-up data also restricts conclusions about interval cancers or long-term impact 
on patient outcomes. 
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Chapter 2 

Research Methodology 

2.1.  Research Design 

The research team carried out a single-centre, cross-sectional ,multi-reader, multi-case 
(MRMC) study to assess the effect of AI assistance on mammography interpretation. An 
MRMC design is well-suited for comparing diagnostic modalities or aids because it 
involves multiple readers evaluating multiple cases under different conditions (here, with 
vs. without AI) and allows for robust statistical comparison of performance metrics. In this 
study, each participating reader interpreted a series of mammographic cases twice: once 
unaided (relying on their own expertise alone) and once with the support of the FxMammo 
AI system. All readings were done under blinded conditions with respect to patient 
outcome; readers did not know the true diagnosis or the proportion of cancer cases, and 
when reading with AI, they only had the AI’s output for that case without feedback about 
correctness. 

2.2.   Data Collection 

The study was conducted at Universitas Gadjah Mada in Yogyakarta, Indonesia, which is a 
tertiary referral centre with a Picture Archiving and Communication System (PACS) 
archiving digital mammograms. We retrospectively collected mammography cases from 
the PACS database spanning the years 2019 to 2024. From this database, a total of 500 
mammographic cases were sampled for the study. We aimed for an even balance of 
malignant and benign/normal cases to adequately test sensitivity and specificity; thus, 
the sample included 250 cases with a confirmed breast malignancy and 250 cases that 
were either normal or benign findings. Each case consisted of the standard four-view 
mammography series (left and right breast, craniocaudal and mediolateral-oblique views), 
as is routine for full diagnostic mammographic evaluation. Inclusion criteria required that 
cases be from women aged 40 and above (the typical screening age range), and that the 
mammographic study was complete (all four standard views present). Cases with biopsy-
proven malignant findings were included as ‘malignant’ ground truth, and cases deemed 
normal or benign had to have concordant follow-up evidence (either a negative two-year 
follow-up or confirmation by ultrasound and/or expert consensus reading as benign). 
Specifically, for benign/normal cases, we required confirmation by at least two breast 
radiologists using standard BI-RADS 5th edition criteria and supplemental ultrasound 
when necessary. This rigorous confirmation was to ensure that our ‘non-cancer’ cases 
truly did not harbor malignancy, thereby avoiding false negatives in the study reference 
standard. 
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Exclusion criteria were applied to avoid confounding factors that might interfere with 
either the AI analysis or human reading. We excluded cases from patients with a prior 
history of breast cancer (before the mammogram date), because their images often 
contain post-surgical changes or markers that could bias a reader or the AI. 
Mammograms with any interventional devices visible (e.g. localisation wires or biopsy 
markers) were excluded, since these could obviously hint at the presence of a lesion and 
also might trigger AI false markings. We also removed cases with breast implants or other 
artifacts that substantially alter mammographic appearance. Lastly, very poor-quality 
mammograms (e.g. underexposed or blurred images) were excluded to ensure that both 
radiologists and the AI were operating on diagnostically adequate studies. After applying 
these criteria, we obtained the final set of 500 cases for analysis. 

2.3. Research Informants – Radiologist Participants (Readers) 

Six readers participated in the interpretation of the mammograms, comprising three 
early-career radiologists and three senior radiology residents who had completed the 
breast imaging component of their training. Each radiologist had a minimum of 3 years 
of post-residency experience in general radiology, with varying degrees of exposure to 
breast imaging. All readers had experience exclusively with diagnostic mammography, 
as the hospital does not currently operate a national mammographic screening 
programme. To avoid bias, none of the participants had substantial prior exposure to the 
FxMammo AI system. 

The residents were in the final stage of their radiology training and had completed a 
dedicated breast imaging rotation or course, equipping them with baseline competency 
in mammogram interpretation, though less experience than the attending radiologists. 

All readers were blinded to clinical information (e.g. patient history, prior imaging), to 
simulate a screening-like environment. They were instructed to interpret each case as 
they would in routine clinical practice. For each mammogram, they recorded a binary 
assessment – positive (suspicious for malignancy) or negative/benign – as well as an 
optional BI-RADS category. Sensitivity and specificity calculations were based on the 
binary assessments. 

2.4. AI System (FxMammo) 

The AI tool used, FxMammo, is a proprietary deep learning system designed to analyse 
mammographic images and provide decision support. It is a form of advanced CAD that 
generates a score indicating the likelihood of malignancy in the study. Before the reading 
sessions, the AI was installed and integrated with our viewing workstation such that 
readers could toggle the AI results on and off. In AI-assisted reads, the reader could see 
the AI’s risk score on the mammograms. The FxMammo algorithm has been trained on a 
large dataset of mammograms and tuned to reduce false positives. For the purpose of our 



7 

study, readers were told that the AI was a support tool and that they should use their 
judgment in conjunction with the AI output. We did not enforce how they were to 
incorporate the AI suggestion – some might choose to trust AI on subtle findings, others 
might use it as a second opinion. 

2.5.  Statistical Analysis Method 

We used several statistical approaches tailored to the MRMC study design. The primary 
endpoints were sensitivity (the proportion of malignant cases correctly identified as 
suspicious) and specificity (the proportion of benign cases correctly identified as non-
suspicious) for each reader under each condition (with AI vs. without AI). These were first 
calculated for each reader and condition. To compare performance, we employed the 
McNemar test for paired proportions to test whether sensitivity with AI was significantly 
different from sensitivity without AI (and similarly for specificity) for the pooled readers. 
McNemar’s test is appropriate for comparing correlated binary outcomes (each case was 
read twice by the same reader). We also report the average sensitivity and specificity 
across readers in each condition, with 95% confidence intervals, and the differences in 
these averages. We set a significance threshold of p < 0.05 for all hypothesis tests. 

We also examined secondary metrics such as the inter-reader agreement: we calculated 
Cohen’s kappa for each pair of readers in each condition to see if AI assistance led to more 
concordant readings amongst different readers (the hypothesis being that AI might guide 
everyone to notice the same lesions, thus increasing agreement). Data analysis was 
performed using Python and R software for specialised analyses. All statistical tests were 
two-tailed. The study was approved by the institutional ethics review board, and being a 
retrospective analysis of anonymised imaging data, informed consent was waived. 
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Chapter 3 

Research Findings 

 

 

3.1.  Study Participants and Case Characteristics:  

All six readers completed the reading sessions with no missing data. Each radiologist-
resident pair reviewed an identical case set, and the randomised crossover ensured 
balanced conditions. The 500 selected cases had a mean patient age of  52.09 years (IQR: 
45–58 years). By design, 50% of cases (n=250) had malignancies, which included a mix of 
masses and microcalcification-dominant lesions spanning various sizes and breast 
density categories. Amongst the 250 malignant cases, the most common 
histopathological diagnosis was invasive carcinoma (228 out of 250, 91.2%). The 250 
benign/normal cases included a variety of findings such as benign calcifications, cysts, 
fibroadenomas, and a substantial subset (approximately half) that were completely 
normal studies (BI-RADS 1 on initial assessment). Breast density distribution (by 
reference standard) in the case set was: 6.4% BI-RADS A (almost entirely fatty), 27.0% BI-
RADS B (scattered fibroglandular densities), 58.0% BI-RADS C (heterogeneously dense), 
and 8.6% BI-RADS D (extremely dense). The younger median age of breast cancer patients 
(52 years) compared to breast cancer in America and Europe, as well as the high 
proportion of dense breasts (C: 58%, D: 8.6%) causes an increased level of difficulty in 
interpreting mammography. This condition also causes AI to be needed to find hidden 
lesions due to dense breasts and increase the accuracy of mammography readings. 
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Table 3.1. Reader Diagnostic Performance with and without AI Assistance 

Reader 
Without AI With AI 

Sensitivity Specificity PPV NPV Accuracy Sensitivity Specificity PPV NPV Accuracy 

JR1 0.640 0.992 0.988 0.734 0.816 0.604 0.992 0.987 0.715 0.798 

JR2 0.876 0.740 0.771 0.856 0.808 0.832 0.856 0.852 0.836 0.844 

JR3 0.776 0.984 0.980 0.815 0.880 0.740 0.992 0.989 0.792 0.866 

SR1 0.596 0.976 0.961 0.707 0.786 0.776 0.900 0.886 0.801 0.838 

SR2 0.708 0.992 0.989 0.773 0.850 0.760 0.992 0.99 0.805 0.876 

SR3 0.804 0.868 0.859 0.816 0.836 0.876 0.924 0.92 0.882 0.900 

JR Group 0.764 0.905 0.913 0.802 0.835 0.725 0.947 0.943 0.781 0.836 

SR Group 0.703 0.945 0.936 0.765 0.824 0.804 0.939 0.932 0.829 0.871 

* JR – Junior radiologist; SR: Senior residents. 
Source: Authors’ data (2025).
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3.2.  Impact of AI on Cancer Detection 

The introduction of AI assistance led to a clear improvement in diagnostic performance 
for both radiologists and residents. Overall accuracy in classifying cases as malignant or 
benign increased significantly for all readers with the help of the AI. For the three 
attending radiologists, the mean accuracy (fraction of cases correctly diagnosed) rose 
from the unaided readings to the AI-assisted readings by a notable margin. When 
averaged across the radiologist group, accuracy improved from approximately 82.9% 
without AI to about 85.4% with AI. For the senior residents, who initially had slightly lower 
performance, the improvement was also striking: their average accuracy increased from 
around 82.4% unaided to 87.1% with AI support.  

Statistical analysis confirmed that these gains were highly significant. Using the McNemar 
test across the pooled decisions of each group, we found p < 0.001 for the difference in 
accuracy between unaided and AI-assisted reading for the resident group. Notably, this 
improvement did not come at the expense of sensitivity or specificity. With AI support, 
readers were able to either maintain or improve sensitivity and specificity concurrently. 
The radiologists, for example, achieved a sensitivity very similar to their unaided 
sensitivity (indeed, if a radiologist missed a cancer on unaided reading, the AI often alerted 
them to it, boosting sensitivity, and none of the radiologists experienced a drop in cancer 
detection with AI). Their specificity was improved, as the AI helped reduce some false-
positive interpretations without causing over-calling of benign findings.  

A similar pattern was observed with the residents: AI assistance enabled them to catch 
substantially more of the cancers they initially missed, thereby raising sensitivity, while 
also helping them avoid some incorrect ‘cancer’ calls on benign cases (maintaining 
specificity). The net effect for both groups was a significant increase in the proportion of 
correct diagnoses overall. Importantly, no case of cancer that was correctly identified 
without AI was missed with AI; if anything, the AI led to additional cancers being detected 
that would have otherwise been overlooked. The improvement in accuracy underscores 
the robust benefit of the AI – both experienced radiologists and trainees benefited from 
the decision support, albeit the residents showed a slightly larger absolute jump in 
performance due to their lower baseline. 



11 

Table 3.2. The Inter-reader Agreement of Readers’ Diagnostic Performance with and 
without AI Assistance 

Reader 
Cohen’s Kappa Score* 

Without AI AI Assisted 

JR1 0.632 0.596 

JR2 0.616 0.688 

JR3 0.767 0.732 

SR1 0.572 0.676 

SR2 0.700 0.752 

SR3 0.672 0.800 

JR Group 0.642 0.672 

SR Group 0.648 0.773 
Source: Authors’ data (2025). 

 

Inter-reader agreement was formally quantified with Cohen’s kappa for every possible 
pair amongst the six readers under each reading condition. When working unaided the 
radiologist pairs demonstrated an average kappa value of 0.642 (commonly interpreted 
as substantial agreement), whereas resident readers demonstrated 0.648, at a higher 
level of substantial agreement. Once FxMammo assistance was introduced, kappa 
increased across both groups: radiologists rose to 0.672 and residents to 0.773. A 
permutation-based comparison of the paired kappa coefficients confirmed that these 
upward shifts were statistically significant. Because kappa corrects for chance agreement, 
the rise indicates that the readers converged on the same judgments more often because 
of AI guidance rather than coincidence.  
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Chapter 4 

Policy Recommendation 

 
The positive impact of AI assistance observed in this study suggests several policy and 
practice recommendations for healthcare administrators, professional bodies, and 
policymakers in the domain of breast cancer screening: 
 

4.1.  Integrate AI as a Second Reader in Screening Programmes 

Health systems, especially those with high screening volumes or limited specialist 
workforce, should consider incorporating validated AI tools like FxMammo into their 
mammography interpretation workflow. As our findings and other studies indicate, AI can 
effectively serve as a second reader that catches additional cancers and reduces 
variability (Kim et al., 2020; Darmiati et al., 2023). For instance, national screening 
programmes could adopt a protocol where every mammogram is analysed by an AI 
algorithm in parallel with a human radiologist. Any case where the AI disagrees with the 
radiologist (either the AI finds a potential cancer the radiologist missed or vice versa) 
could be flagged for a consensus review or a second human opinion.  

This model would emulate double-reading, which has known benefits, but with the AI 
taking on one of the reader roles. By doing so, countries with radiologist shortages could 
ensure that each mammogram effectively gets two readings (one human, one AI) without 
doubling the human resource requirement. Pilot implementations in parts of Europe have 
already tested replacing one human reader in a double-read system with AI, showing 
maintained accuracy and significantly reduced workload (Elhakim et al., 2024). 
Policymakers should allocate funding and develop infrastructure to gradually deploy such 
AI-assisted screening, starting perhaps with high-volume centers. 

 

4.2. Training and Education 

Introducing AI into clinical practice should be accompanied by comprehensive training for 
radiologists and radiology trainees. Residency programmes and continuing medical 
education courses need to include modules on AI in imaging. Radiologists should learn 
about the basics of how these algorithms work, their known failure modes, and best 
practices for using AI outputs in decision-making. This is akin to training pilots when new 
cockpit automation is introduced – users must know when to trust the system and when 
to be cautious.  

Our findings showed that AI can both increase sensitivity and help reduce some false 
positives, but improper use could lead to over-reliance. Training should emphasise 
maintaining one’s own interpretative skills and using AI as a tool for confirmation or a 
second opinion. Radiologists might review past cases with AI to see what they missed, 
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thereby learning and potentially improving their skills (the AI, in essence, could be a 
feedback mechanism). Institutions should also foster a culture where radiologists discuss 
AI findings openly, perhaps in regular meetings (e.g. ‘missed-case conference’ where AI-
detected misses are reviewed, turning them into learning opportunities). This educational 
approach will help mitigate resistance to AI and improve user acceptance by 
demonstrating AI’s value in a controlled manner. 

 

4.3. Workflow Integration and Resource Planning 

Healthcare administrators must plan for the practical aspects of AI integration. This 
includes ensuring IT infrastructure can handle AI software – high-performance servers or 
cloud services may be needed to run the algorithms quickly so as not to delay reading 
times. PACS vendors should be involved to seamlessly integrate AI results into 
radiologists’ workstations (for example, overlaying AI annotations on images). Typically, 
the integration of AI can be carried out seamlessly without requiring additional processing 
time, as it leverages the existing CAD architecture. The analysis of mammogram data 
generally takes approximately 3 to 5 minutes. Workflow needs to be designed so that AI 
results are available at the right time; an ideal scenario is for AI to pre-reads the exams 
and be ready with results as the radiologist begins reading, so there is no time lost 
(Elhakim et al., 2024).  

In terms of resource allocation, while AI software can be expensive, the cost might be 
offset by gains in efficiency. Policymakers could consider funding models or 
reimbursements for AI-supported readings, incentivising adoption. If AI allows one 
radiologist to do the work that previously required two readers, that could alleviate 
staffing bottlenecks. However, it should be noted that initial phases might require running 
AI and full double reading in parallel to build trust, effectively increasing workload in the 
short term. Planning should account for this transitional phase where AI is monitored. 
Furthermore, with AI taking on some workload, radiologists might be able to spend more 
time on complex cases or other duties, which is a beneficial redistribution of human 
resources.  

 

4.4. Continuous Monitoring and Feedback 

Once AI is integrated, there should be a system for ongoing monitoring of its performance 
and its interaction with radiologist performance. This could be a registry or regular audit 
where outcomes (cancers detected, interval cancers, false positives) are tracked and 
compared against historical benchmarks. If any drop in performance is noted, one should 
investigate whether the AI is causing issues or whether radiologists are perhaps over-
relying on it.  

Also, user feedback loops to AI developers are important; for example, our study identified 
a couple of scenarios where the AI made false predictions. Reporting such cases back to 
the developers can help them improve the algorithm in future versions. Policymakers 
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could encourage a framework where data from real-world use of AI (while protecting 
patient privacy) are aggregated to further refine AI tools – essentially creating health 
systems that make AI better over time.  
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Chapter 5 

Conclusion 

 

This study examined the impact of the AI system FxMammo on mammographic breast 
cancer detection and found that it significantly enhances diagnostic performance. In a 
controlled multi-reader, multi-case setting, AI use led to improved cancer detection 
sensitivity across all readers, with particularly notable gains in challenging cases such as 
dense breast tissue and among less-experienced readers. Crucially, these improvements 
were achieved without a substantial rise in false positives, suggesting that FxMammo 
improved the diagnostic signal without adding excessive noise. 

The consistent performance gains across multiple readers also indicate that AI can help 
reduce inter-reader variability – a longstanding challenge in breast imaging. By providing 
analytical support and triaging capabilities, FxMammo addresses key issues in 
mammography, including interpretive inconsistency and heavy clinical workloads. 

In conclusion, integrating AI systems like FxMammo into breast imaging workflows offers 
a tangible step forward in cancer diagnostics. It enables earlier and more accurate 
detection while maintaining specificity, helping overstretched healthcare systems extend 
the capabilities of existing radiology resources. For patients, this translates to a greater 
chance of timely cancer detection and fewer unnecessary follow-ups. 

  



16 

References 

Bernstein, M.H. et al. (2023), ‘Can incorrect artificial intelligence (AI) results impact 
radiologists, and if so, what can we do about it? A multi-reader pilot study of lung 
cancer detection with chest radiography’, European radiology, 33(11), pp.8263–69. 

Carney, P. A. et al. (2003), ‘Individual and combined effects of age, breast density, and 
hormone replacement therapy use on the accuracy of screening mammography,’ 
Annals of Internal Medicine, 138(3), pp.168–75. 

Dang, L.-A. et al. (2022), ‘Impact of artificial intelligence in breast cancer screening with 
mammography,’ Breast Cancer, 29(6), pp.967–77. 

Darmiati, S. et al. (2023), ‘Impact of Artificial Intelligence on Mammography Interpretation 
by Breast Radiologists, Non-Breast Radiologists, and Senior Residents’, Indonesian 
Journal of Cancer, 17(4), pp.327–37.  

del Carmen, M.G. et al. (2007), ‘Mammographic breast density and race’, American Journal 
of Roentgenology, 188(4), pp.1147–50. 

Dembrower, K. et al. (2020), ‘Comparison of a deep learning risk score and standard 
mammographic density score for breast cancer risk prediction’, Radiology, 294(2), 
pp.265–72. 

Elhakim, M.T. et al. (2024), ‘AI-integrated screening to replace double reading of 
mammograms: a population-wide accuracy and feasibility study’, Radiology: 
Artificial Intelligence, 6(6), e230529. 

Elmore, J.G. et al. (2009), ‘Variability in interpretive performance at screening 
mammography and radiologists’ characteristics associated with accuracy’, 
Radiology, 253(3), pp.641–51. 

Kerlikowske, K. and A.I. Phipps (2011), 'Breast density influences tumor subtypes and 
tumor aggressiveness', Journal of the National Cancer Institute, 103, pp.1143–45. 

Kim, H.-E. et al. (2020), ‘Changes in cancer detection and false-positive recall in 
mammography using artificial intelligence: a retrospective, multireader study’, The 
Lancet Digital Health, 2(3), e138–e148. 

Lehman, C.D. et al. (2015), ‘Diagnostic accuracy of digital screening mammography with 
and without computer-aided detection’, JAMA Internal Medicine, 175(11), pp.1828–
37. 

Pacilè, S. et al. (2020), ‘Improving breast cancer detection accuracy of mammography with 
the concurrent use of an artificial intelligence tool’, Radiology: Artificial Intelligence, 
2(6), e190208. 



17 

Shi, J. et al. (2025), ‘The screening value of mammography for breast cancer: an overview 
of 28 systematic reviews with evidence mapping’, Journal of Cancer Research and 
Clinical Oncology, 151(3), pp.1–20. 

  

 




