Hydrogen Demand and Supply in ASEAN's Industry Sector: Current Situation and the Potential of a Greener Future

Edited by

Alloysius Joko Purwanto Ridwan Dewayanto Rusli

Hydrogen Demand and Supply in ASEAN's Industry Sector: Current Situation and the Potential of a Greener Future

© Economic Research Institute for ASEAN and East Asia, 2024 Published in January 2024

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means electronic or mechanical without prior written notice to and permission from ERIA.

The findings, interpretations, conclusions, and views expressed in their respective chapters are entirely those of the author/s and do not necessarily reflect the views and policies of the Economic Research Institute for ASEAN and East Asia, its Governing Board, Academic Advisory Council, or the institutions and governments they represent. Any error in content or citation in the respective chapters is the sole responsibility of the author/s.

Material in this publication may be freely quoted or reprinted with proper acknowledgement.

Cover Art by Citra and Artmosphere Book Design by ERIA and Artmosphere National Library of Indonesia Cataloguing-in-Publication Data

ISBN 978-602-5460-54-8

Foreword

Climate change and the energy transition have made research and development in clean energy a priority as countries aim to reach net zero in the next decades. Hydrogen, singled out as a possible source of energy in the not-too-distant future, has emerged as a primary focus of discussion on the transition to sustainable energy. It is widely used for many applications including refining ammonia and petroleum, and the production of methanol and synthetic fuels. These applications accounted for more than 93% of global hydrogen consumption in 2020.

In the Association of Southeast Asian Nations (ASEAN) countries, currently, hydrogen is used mostly as feedstock for fertiliser in agriculture, and in methanol production, the steel industry, and oil refining. However, most hydrogen in use in the world today is not 'green' or 'low carbon' hydrogen, which is produced from renewable resources.

Most ASEAN Member States have realised the importance and potential of hydrogen as an alternative to fossil fuels and that can be employed across industries, power generation, and transport. Therefore, these countries have begun implementing their own hydrogen strategies to initiate the development of the hydrogen economy that will become an essential and crucial aspect of their energy transition process in the future.

With this research, the Economic Research Institute for ASEAN and East Asia (ERIA) tries to show the potential role of hydrogen in the industry sectors in ASEAN in the context of decarbonisation, an area that has hitherto received limited analysis and remains largely unexplored. ASEAN Member States should have an in-depth look at the findings of this research that can be considered as important elements to complete and to improve their current hydrogen strategies.

Tetanja Watande

Tetsuya Watanabe President, Economic Research Institute for ASEAN and East Asia

Preface

Recognising that the current utilisation of hydrogen in the Association of Southeast Asian Nations (ASEAN) countries is predominantly confined to the industrial sector, primarily through conventional steam methane reforming with high carbon intensity, this study seeks to provide insights for an optimal hydrogen market development strategy in the region. The significance of this strategy is paramount, given the pivotal role hydrogen is poised to play in ASEAN's energy transition towards achieving carbon neutrality by the middle of the century.

The specific goal of this study is to provide a set of policy recommendations for policymakers in the ASEAN Member States to accelerate the process of obtaining lower carbon intensity of hydrogen supply in the industry sector, as part of an optimal hydrogen market development strategy for the ASEAN region.

This goal is attained via two pathways. First, by understanding hydrogen use in the ASEAN countries for the last 5 to 10 years and its current and future demand and supply to the industry sector, and second by analysing how the supply of hydrogen in the ASEAN countries can become greener or less carbon intensive. This includes an analysis of future production, storage, transport costs, and capacity development along the different low-carbon hydrogen production routes.

To accelerate the process of obtaining low-carbon hydrogen supply in the industry sector, this study recommends the governments of ASEAN Member States to proceed with the following:

- Continue to increase renewable electricity generation's share and reduce transmission costs.
- From the perspective of sectoral, regional, and international political economy, formulate strategies and manage the horizontal and vertical institutional interactions to gain maximum support for the greening of hydrogen production for key industrial applications in the ASEAN region.
- Elaborate policies on how to combine public sector co-financing, subsidies, and/or tax breaks with optimal carbon pricing to incentivise the production of low-carbon (green) hydrogen in the near term.
- Launch low-carbon hydrogen pilot projects, such as producing it from the surplus electricity
 generated by variable renewable energy resources including solar photovoltaic and geothermal
 or producing it from electricity generated by variable renewable energy in remote areas where
 electricity demand is negligible. Along these production pathways, hydrogen plays the role of
 batteries and/or transportable batteries, thus facilitating penetration of variable renewable
 electricity.

The authors hope that this study will provide new insights on an optimal hydrogen market development strategy for the ASEAN region.

Acknowledgements

This study was undertaken in close collaboration with the working group members that come from different institutions representing expertise in five industry subsectors in ASEAN, i.e. oil refining, ammonia, methanol, iron and steel, and chemical industries.

In-person and virtual discussions with industrial players and policymakers were organised during the study period. The authors thank the participants of the online workshops on 3 November 2021 and on 2 August 2023.

The presentations at the workshops – from the region's industry players, government authorities, and stakeholders – and ensuing discussions were useful and inspiring to develop future strategies and policy measures to support development activities.

The authors also express sincere appreciation to Aris Mulya Azof (PT Pertamina Persero), Hari Y. W. Sasongko (Air Products Indonesia), Somrudee Predapitakkun (Petroleum Authority of Thailand [PTT] PLC), Thana Sornchamni (PTT PLC), Satthawut Suwanthitirata (Bangkok Industrial Gas Co. Ltd.), and their teams for the extensive discussions and support for this study.

As a disclaimer, all errors and mistakes are the authors' responsibility.

Alloysius Joko Purwanto

Working Group Leader

List of Working Group Members

Alloysius Joko Purwanto Energy Economist, Economic Research Institute for ASEAN and East Asia (ERIA)

Ridwan Dewayanto Rusli Technische Hochschule Köln (Cologne University of Applied Sciences) and University of Luxembourg

Citra Endah Nur Setyawati Research Associate, ERIA.

Ryan Wiratama Bhaskara Research Associate, ERIA

Nadiya Pranindita Research Associate, ERIA

Dian Lutfiana Former Research Associate, ERIA

Sirichai Koonaphapdeelert Chiang Mai University

Reza Miftahul Ulum University of Indonesia

Badrul Munir University of Indonesia

Deni Ferdian University of Indonesia

Hafis Pratama Rendra Graha Bandung Institute of Technology

Zainal Abidin Bandung Institute of Technology

Veradika Elsye Bandung Institute of Technology

Table of Contents

	Foreword	iii
	Professo	iv
	Asknowledgements	IV
		v
		VI
		VIII
	List of Tables	xi
	List of Appendices	xiii
	List of Abbreviations and Acronyms	xiv
Chapter 1	Introduction	2
	Alloysius Joko Purwanto and Ridwan Dewayanto Rusli	
Chapter 2	Current Hydrogen Demand and Supply Alloysius Joko Purwanto, Ridwan Dewayanto Rusli, Hafis Pratama Rendra Graha, Sirichai Koonaphapdeelert, Reza Miftahul Ulum, Akhmad Zainal Abidin, Citra Endah Nur Setyawati, Dian Lutfiana, Badrul Munir, Deni Ferdian, Veradika, Elsye, Ryan Wiratama Bhaskara, and Nadiya Pranindita	10
Chapter 3	Elaboration of Future Scenarios Alloysius Joko Purwanto, Ridwan Dewayanto Rusli, Citra Endah Nur Setyawati, Dian Lutfiana, Ryan Wiratama Bhaskara, and Nadiya Pranindita	68
Chapter 4	Future Hydrogen Demand and Supply Forecast Alloysius Joko Purwanto, Ridwan Dewayanto Rusli, Hafis Pratama Rendra Graha, Sirichai Koonaphapdeelert Reza Miftahul Ulum, Akhmad Zainal Abidin, Citra Endah Nur Setyawati, Dian Lutfiana, Badrul Munir, Deni Ferdian, Veradika Elsye, Ryan Wiratama Bhaskara, and Nadiya Pranindita	88
Chapter 5	Hydrogen Economics for Southeast Asian Industries Ridwan Dewayanto Rusli, Alloysius Joko Purwanto, Citra Endah Nur Setyawati, Veradika Elsye, Ryan Wiratama Bhaskara, and Nadiya Pranindita	132
Chapter 6	Political Economy of Hydrogen in ASEAN Ridwan Dewayanto Rusli, Citra Endah Nur Setyawati, and Alloysius Joko Purwanto	146
Chapter 7	Conclusions, Policy Recommendations, and Way Forward Alloysius Joko Purwanto and Ridwan Dewayanto Rusli	162
References		172
Appendices		180

List of Figures

Figure 2.1	Schematic Diagramme of Oil Refinery Process	12
Figure 2.2	Summary of ASEAN-8 Refinery Sector	16
Figure 2.3	Southeast Asia's Hydrogen Demand from Oil Refining (TPA)	17
Figure 2.4	Hydrogen Demand from Oil Refining (TPA)	18
Figure 2.5	ERIA Southeast Asian Hydrogen Supply and Demand from Oil Refining (TPA)	20
Figure 2.6	Southeast Asia's Hydrogen Demand in Chemicals and Processing by Subsector (TPA)	22
Figure 2.7	Hydrogen Demand of Chemicals by Country (TPA)	23
Figure 2.8	Production, Consumption, and Trade of Ammonia in Selected Countries and Regions, 2020	25
Figure 2.9	Production of Ammonia Worldwide in 2020 by Region	26
Figure 2.10	Ammonia Production Plants in ASEAN	27
Figure 2.11	Flow Diagramme for Ammonia Synthesis Plant	28
Figure 2.12	Southeast Asia's Ammonia Historical Import Volume	33
Figure 2.13	Southeast Asia's Ammonia Historical Export Volume	34
Figure 2.14	Southeast Asia's Ammonia Historical Supply and Demand	35
Figure 2.15	Southeast Asia's Hydrogen Supply and Demand from Ammonia Industry	35
Figure 2.16	Southeast Asia's Hydrogen Demand from Ammonia Industry, 2015–2021	36
Figure 2.17	World Production and Consumption of Methanol, 2001–2020	40
Figure 2.18	Methanol Demand by Major Regions in 2020	41
Figure 2.19	Methanol Supply by Major Regions in 2020	42
Figure 2.20	Methanol Synthesis Process	44
Figure 2.21	The Process of Synthesising Methanol from CO ₂	45
Figure 2.22	Biomass Methanol Synthesis Process	46
Figure 2.23	E-methanol from Electrolysis Process	47
Figure 2.24	Methanol Trade Balance in Southeast Asia in 2019	49
Figure 2.25	Domestic Consumption of Methanol between 2012 and 2021	50
Figure 2.26	Production of Methanol in Brunei, Indonesia, and Malaysia	51
Figure 2.27	Hydrogen Demand and Supply for Methanol Production (TPA)	51
Figure 2.28	Global Hydrogen Demand by Sector in the Net-Zero Scenario, 2019–2021	55
Figure 2.29	Classification of Direct Reduced Iron	59

Figure 2.30	Schematic Process of Basic Oxygen Furnace	60
Figure 2.31	Schematic Process of Electric Arc Furnace	61
Figure 2.32	DRI Production Worldwide by Process, 2019–2021	62
Figure 2.33	Total Production of Raw Steel in the ASEAN Region, 2015–2022	63
Figure 2.34	DRI Production in ASEAN Region, 2015–2021	64
Figure 2.35	Hydrogen Demand from Raw Steel Production in Indonesia and Malaysia	65
Figure 2.36	Total 2015–2021 Hydrogen Demand in Industry Sector in ASEAN (TPA)	68
Figure 2.37	Total 2015–2021 Hydrogen Captive Supply in Industry Sector in ASEAN (TPA)	67
Figure 3.1	Temperature Rise in 2050 and 2100 in the World Energy Outlook 2022 Scenarios	72
Figure 3.2	Global Hydrogen Demand by Sector	74
Figure 3.3	Breakdown of Hydrogen Use	76
Figure 3.4	Global Production of Hydrogen as Feedstock by Production Route	78
Figure 3.5	Scenario Implementation Method	87
Figure 4.1	ASEAN-8 Refineries Hydrogen Demand – BAU/Frozen (TPA)	93
Figure 4.2	ASEAN-8 Refineries Hydrogen Demand-Supply – BAU/Frozen (TPA)	94
Figure 4.3	ASEAN-8 Refineries Hydrogen Demand – STEPS (TPA)	95
Figure 4.4	ASEAN-8 Refineries Hydrogen Demand-Supply – STEPS (TPA)	96
Figure 4.5	ASEAN-8 Refineries Hydrogen Demand – APS (TPA)	98
Figure 4.6	ASEAN-8 Refineries Hydrogen Demand and Supply – APS (TPA)	99
Figure 4.7	ASEAN-8 Refineries Hydrogen Demand – Likely Scenario (TPA)	100
Figure 4.8	ASEAN-8 Refineries Hydrogen Demand and Supply – Likely Scenario (TPA)	101
Figure 4.9	Hydrogen Demand in Chemicals by Subsector (TPA)	102
Figure 4.10	Hydrogen Demand in Chemicals by Country (TPA)	103
Figure 4.11	Frozen Scenario for Hydrogen Demand from Ammonia Industry in the Region (TPA)	105
Figure 4.12	Hydrogen Supply and Demand from Ammonia Production in Frozen Scenario (TPA)	106
Figure 4.13	STEPS for Hydrogen Demand from Ammonia Industry in the Region (TPA)	106
Figure 4.14	Hydrogen Supply and Demand from Ammonia Production in STEPS (TPA)	107
Figure 4.15	Likely Scenario for Hydrogen Demand from Ammonia Industry in the Region (TPA)	108

Figure 4.16	Hydrogen Supply and Demand from Ammonia Production in ERIA-Likely Scenario (TPA)	109
Figure 4.17	APS for Hydrogen Demand from Ammonia Industry in the Region (TPA)	110
Figure 4.18	Hydrogen Supply and Demand from Ammonia Production in APS (TPA)	111
Figure 4.19	STEPS for Methanol Demand in the Region	113
Figure 4.20	Hydrogen Demand from Methanol Production in STEPS	114
Figure 4.21	APS for Methanol Demand in the Region	115
Figure 4.22	Hydrogen Demand from Methanol Production in the APS	116
Figure 4.23	The Methanol Demand in the Region in the ERIA Likely Scenario	117
Figure 4.24	Hydrogen Demand from Methanol Production in the Most-likely Scenario	118
Figure 4.25	Demand and Supply of Iron and Steel in the ASEAN Region Using the STEPS, APS, and Likely Scenario Methods	120
Figure 4.26	ASEAN-8 Raw Steel Hydrogen Demand– Frozen Trend (TPA)	121
Figure 4.27	ASEAN-8 Raw Steel Hydrogen Demand-Supply– Frozen Trend (TPA)	121
Figure 4.28	ASEAN-8 Raw Steel Hydrogen Demand– STEPS (TPA)	122
Figure 4.29	ASEAN-8 Raw Steel Hydrogen Demand and Supply – STEPS (TPA)	123
Figure 4.30	SEAN-8 Raw Steel Hydrogen Demand – APS (TPA)	124
Figure 4.31	ASEAN-8 Raw Steel Hydrogen Demand-Supply – APS (TPA)	124
Figure 4.32	ASEAN-8 Raw Steel Hydrogen Demand – Likely Scenario (TPA)	125
Figure 4.33	ASEAN-8 Raw Steel Hydrogen Demand and Supply – Likely Scenario (TPA)	126
Figure 4.34	Total Hydrogen Demand for Industry Sector in ASEAN by Scenario (million tons per annum)	127
Figure 4.35	Total Hydrogen Production in Industry Sector in ASEAN by Scenario (million tons per annum)	129
Figure 5.1	Hydrogen Cost by Production Type	134
Figure 5.2	Levelized Cost of Ammonia Production	136
Figure 5.3	Estimated Costs of Steel (2018)	138
Figure 5.4	Green Hydrogen Production Estimates	141
Figure 5.5	Cost of Green Hydrogen at Refuelling Station at 500 km Trucking Distance (US\$/kg)	142
Figure 5.6	Hydrogen Production Cost (US\$/kg): Onsite Solar PV Electrolyser	144

List of Tables

Table 2.1	Cumulative Annual Growth Rate (CAGR) for Hydrogen Demand in Southeast Asia	19
Table 2.2	Properties of Ammonia	23
Table 2.3	Comparison of the Properties of Methanol, Ethanol, and Gasoline	37
Table 2.4	Applications of Methanol in Various Industries	38
Table 2.5	Applications of Methanol in Various Industries	43
Table 2.6	Specific Hydrogen Required for Direct Reduction Purpose	57
Table 3.1	Global Hydrogen Use by Types and Purpose (million tons)	76
Table 3.2	Global Hydrogen use Break Down (million tons)*	77
Table 3.3	ASEAN Member States' Individual Intended Nationally Determined Contributions	81
Table 3.4	Key Assumed Parameters Used in ERIA-STEPS for Southeast Asia taken from IEA's STEPS	82
Table 3.5	Key Assumed Parameters Used in the ERIA-APS for Southeast Asia Taken from IEA's APS	83
Table 3.6	Assumed Policy Measures and Trends in the Ammonia, Methanol, and Iron and Steel Industries of ERIA-APS Inspired by IEA's NZE Scenario	84
Table 3.7	Key Assumed Parameters in Iron and Steel Industry in the ERIA-APS Scenario based on the NZE scenario of IEA (2021)	85
Table 4.1	ERIA's Projection on Hydrogen Demand in Southeast Asia	90
Table 4.2	ASEAN Member States Governments' COP26 Pledges	97
Table 4.3	Compound Annual Growth Rate of Hydrogen Demand for Industry Sector in ASEAN by Period and Scenario	118
Table 4.4	Part of Supply from Merchant in Total Hydrogen Demand in Industry Sector in ASEAN	130
Table 5.1	Hydrogen, Ammonia, and Methanol Production Costs in Germany	135
Table 5.2	Selected Studies on Methanol Production Cost by Carbon and Electricity Sources	137
Table 5.3	Current and Projected Installed Renewable Capacity in ASEAN	139
Table 5.4	Cost of Electricity (2020 US\$)	140
Table 5.5	Onsite Solar PV-based Green Hydrogen Production Assumptions	143
Table 6.1	Decarbonisation Recommendation and Projects	149
Table 6.2	Hydrogen Proposals and Projects	149

Table 6.3	Hydrogen Policies and Emission Reduction Targets of ASEAN Governments	151
Table 6.4	Hydrogen-related Activities of Companies in Southeast Asia	153
Table 6.5	Characteristics of and Potential Support from Industrial Actors	156

List of Appendices

Appendix 1 – ERIA-Frozen Scenario	180
Appendix 2 – ERIA-STEPS	187
Appendix 3 – ERIA-LIKELY Scenario	195
Appendix 4 – ERIA-APS	202

List of Abbreviations and Acronyms

ACE	ASEAN Centre for Energy
AEO	ASEAN Energy Outlook
AHEAD	Advanced Hydrogen Energy Chain Association for Technology Development
AMS	ASEAN Member States
APAEC	ASEAN Plan of Action for Energy Cooperation
APS	Announced Pledges Scenario
ASEAN	Association of Southeast Asian Nations
ATR	Autothermal Reforming
ATS	AMS Targets Scenario
BAU	Business-As-Usual
BECCS	Bioenergy with Carbon Capture and Storage
BEV	Battery Electric Vehicle
BF-BOF	Blast Furnace–Basic Oxygen Furnace
CAGR	Cumulative Annual Growth Rate
CCS	Carbon Capture and Storage
CCUS	Carbon Capture Utilisation and Storage
CN	Carbon Neutral
C02	Carbon Dioxide
СОР	Conference of the Parties
COVID	Novel Coronavirus Disease
DAC	Direct Air Capture
DACCS	Direct Air Capture with Carbon Capture and Storage
DNV	Det Norske Veritas

DRI	Direct Reduced Iron
DRI-EAF	Direct Reduced Iron-Electric Arc Furnace
EE	Energy Efficiency
EJ	Exajoule
ERIA	Economic Research Institute for ASEAN and East Asia
EUR	Euro
EV	Electric Vehicle
FCEV	Fuel Cell Electric Vehicle
GDP	Gross Domestic Product
GHG	Greenhouse Gas
GW	Gigawatt
НВІ	Hot Briquetted Iron
HDF	Hydrogene De France
IEA	International Energy Agency
IEEJ	Institute of Energy Economics Japan
IESR	Institute for Essential Services Reform
IISIA	Indonesian Iron and Steel Industry Association
INDC	Intended Nationally Determined Contribution
IRENA	International Renewable Energy Agency
ISOM	Isomerisation
JETP	Just Energy Transition Partnership
KBPD	Thousand Barrels per Day
KTPA	Kilo Tons per Annum

Lao PDR	Lao People's Democratic Republic
LCOE	Levelized Cost of Electricity
LED	Light Emitting Diode
LNG	Liquefied Natural Gas
LS	Likely Scenario
MEA	Mono-ethanolamine
MEMR	Ministry of Energy and Mineral Resources
МЕТІ	Ministry of Economy, Trade and Industry
MOU	Memorandum of Understanding
МТ	Million Tons
МТВЕ	Methyl Tertiary Butyl Ether
МТРА	Million Tons per Annum
MW	Megawatt
NDC	Nationally Determined Contribution
NZE	Net-Zero Emissions
OGJ	Oil and Gas Journal
PEM	Proton Exchange Membrane
PLN	PT Perusahaan Listrik Negara
PNOC	Philippine National Oil Company
РТ	Perseroan Terbatas
РТТ	Petroleum Authority of Thailand
PV	Photovoltaic
RE	Renewable Energy

SDG	Sustainable Development Goals
SDS	Sustainable Development Scenario
SEA	Southeast Asia
SEAISI	Southeast Asia Iron & Steel Institute
SMR	Steam Methane Reforming
STEPS	Stated Policies Scenario
ТРА	Tons per Annum
TWh	Terawatt Hour
US	United States
US\$	United States Dollar
USGS	United States Geological Survey
VRE	Variable Renewable Energy
WEO	World Energy Outlook