Analysis on Energy Cost of LCET-CN based on ERIA Energy Outlook Models 2024

Edited by Shigeru Kimura Citra Endah Nur Setyawati

Analysis on Energy Cost of LCET-CN based on ERIA Energy Outlook Models 2024

Economic Research Institute for ASEAN and East Asia (ERIA) Sentral Senayan II 6th Floor Jalan Asia Afrika No. 8, Gelora Bung Karno Senayan, Jakarta Pusat 10270 Indonesia

© Economic Research Institute for ASEAN and East Asia, 2024 ERIA Research Project Report FY2024 No. 12 Published in August 2024

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means electronic or mechanical without prior written notice to and permission from ERIA.

The findings, interpretations, conclusions, and views expressed in their respective chapters are entirely those of the author/s and do not reflect the views and policies of the Economic Research Institute for ASEAN and East Asia, its Governing Board, Academic Advisory Council, or the institutions and governments they represent. Any error in content or citation in the respective chapters is the sole responsibility of the author/s.

Material in this publication may be freely quoted or reprinted with proper acknowledgement.

Foreword

Currently, the national pathway to achieve carbon neutrality by 2050 or later is a key focus. Optimisation approaches such as the Linear Programming method are commonly applied to select zero-emission fuels and technologies under cost-minimisation conditions. ERIA began exploring national pathways to achieve carbon neutrality by 2050 or later in 2019–20 under the EAS Energy Outlook framework. However, it used an econometric approach to select traditional renewable energy sources (hydro, geothermal, and biomass), variable renewable energy sources (solar and wind), nuclear power, CCS for thermal power plants, and hydrogen use for industry, transport (road), and thermal power plants (known as cofiring) manually.

ERIA has newly produced LCET-CN (Low Carbon Energy Transition – Carbon Neutral) scenarios for the 17 EAS countries in addition to the BAU (Business as Usual) and APS (Alternative Policy Scenario), which reflects aggressive EEC and RE targets. This LCET-CN scenario does not guarantee a cost-minimum pathway due to the application of the econometric approach. However, using the energy outlook results until 2050, we can conduct a cost comparison analysis between BAU and LCET-CN. In other words, we compare the future energy costs of a fossil fuel society and a clean energy society.

Energy costs consist of the following items:

- a. Fossil fuels, which include coal, oil, and gas,
- b. Power investment costs,
- c. Hydrogen costs,
- d. CCS costs.

The BAU scenario requires significant fuel costs for coal, oil, and gas, and thermal power investment. In contrast, the LCET-CN scenario requires renewable energy, nuclear power, hydrogen, and CCS. Energy consumption and power generation by all power sources come from the EAS Energy Outlook for both BAU and LCET-CN, but fuel prices (including hydrogen), unit investment costs of all power sources, and CCS costs are assumptions. Thus, if we change the assumptions, the cost comparison results will also change.

This report includes:

- a. Revised LCET-CN results, and
- b. The cost comparison results for the 17 EAS countries.

However, both the LCET-CN and the cost comparison analysis do not cover all low or zerocarbon fuels and technologies. These include thermal power generation with cofiring hydrogen, ammonia, and biomass; the necessary capacity of battery electric storage systems (BESS) for solar PV; demand and supply of e-fuels and e-methane; and DACCS (Direct Air Carbon Capture and Storage) and BECCS (Bioenergy with Carbon Capture and Storage).

ERIA primarily uses an econometric model, which has limitations in reflecting all low and zero-carbon fuels and technologies. Nonetheless, ERIA, in collaboration with ERIA Working Group members for the EAS Energy Outlook and Energy Saving Potential in the East Asia Region, is dedicated to incorporating these fuels and technologies as much as possible.

We hope this report will provide valuable discussion points regarding the achievement of carbon neutrality to energy policymakers, academia, and private/public companies in the EAS region.

Tetanja Watande

Tetsuya Watanabe

President of ERIA (Economic Research Institute for ASEAN and East Asia)

Acknowledgements

This report was prepared in collaboration with the ERIA Working Group for EAS Energy Outlook and Energy Saving Potential, which consists of energy outlook modelers from the 17 EAS countries. Additionally, I would like to express my appreciation to the Institute of Energy Economics, Japan (IEEJ) for updating the energy outlook and energy-saving potential, as well as the LCET-CN scenario for the EAS +7 countries.

I also extend my gratitude to ERIA research associates, namely Citra Endah Nur Setyawati and Ryan Wiratama Bhaskara, for their engagement in publishing this report. Finally, I would like to give special thanks to the ERIA editing team, led by Stefan Wesiak, for their remarkable work in editing this report.

Shigeru Kimura

Senior Policy Fellow on Energy Affairs Economic Research Institute for ASEAN and East Asia

List of Project Members

Shigeru Kimura, ERIA Citra Endah Nur Setyawati, ERIA Han Phoumin, ERIA Alloysius Joko Purwanto, ERIA Ryan Wiratama Bhaskara, ERIA Laksmita Dwi Hersaputri, ERIA

- Maekawa Kiminori, Senior Research Director & Group Manager, International Cooperation Group, IEEJ
- Cecilya L. Malik, Energy Consultant, Indonesia
- Shamim Ahmad, Assistant Director, Resources and Energy Insights Branch, Office of the Chief Economist, Department of Climate Change, Energy, the Environment and Water (DCCEEW), Australia
- Adarsh Kumar Singh, Energy Studies Programme, School of International Studies, Jawaharlal Nehru University, Delhi, India
- Heang Theangseng, Chief of Energy Statistics, Department of Energy Development, General Department of Energy, Ministry of Mines and Energy (MME), Cambodia
- Hui Li, Assistant Professor, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology (BIT), China
- Ruining Zhang, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology (BIT), China
- Atul Kumar, Professor, Energy Study Programme, School of International Studies, Jawaharlal Nehru University (JNU), India
- Suharyati Nugroho, Coordinator/Head, Energy Planning Division, Energy Policy Bureau, Secretary General, National Energy Council (NEC), Indonesia
- Eto Ryo, Senior Economist, Energy and Economic Analysis Group (EEA), EDMC, IEEJ, Japan
- Seiya Endo, Senior Economist, ESA, EDMC, IEEJ, Japan

Ryohei Ikarii, Senior Economist, ESA, EDMC, IEEJ, Japan

- **Davanhny Xaneth**, Chief, Energy Policy Division, Department of Energy Policy and Planning, Ministry of Energy and Mines (MEM), Lao PDR
- Zaharin Zulkifli, Deputy Director, Strategic Planning and Communication Department, Energy Commission (ST), Malaysia
- Swe Swe Than, Deputy Director, Oil and Gas Planning Department (OGPD), Ministry of Energy (MOE), Myanmar
- Lilibeth T. Morales, Senior Science Research Specialist, Policy Formulation and Research Division, Energy Policy and Planning Bureau (EPPB), Department of Energy (DOE), Philippines
- **Kyung-Jin Boo**, Research Professor, Institute of Engineering Research, Seoul National University (SNU), Republic of Korea
- **Zhong Sheng**, Senior Research Fellow, Energy Studies Institute (ESI), National University of Singapore (NUS), Singapore
- Supit Padrem, Energy Policy and Planning Office (EPPO), Ministry of Energy (MOEN), Thailand
- Vichien Tantiwisarn, Energy Policy and Planning Office, Thailand
- Surasit Tanthadiloke, Energy Policy and Planning Office, Thailand
- **Clara Gillispie**, Senior Advisor, Board of Advisors, The National Bureau of Asian Research (NBR), United States
- Nguyen Minh Bao, Energy Consultant, Viet Nam
- Hien Dang, Energy Consultant, New Zealand

Table of Contents

	Foreword	iii
	Acknowledgements	V
	List of Project Members	iv
	List of Figures	ix
	List of Tables	XV
	Introduction	xix
Chapter 1	Australia Country Report	1
Chapter 2	Brunei Darussalam Report	16
Chapter 3	Cambodia Country Report	26
Chapter 4	China Country Report	40
Chapter 5	India Country Report	57
Chapter 6	Indonesia Country Report	72
Chapter 7	Japan Country Report	94
Chapter 8	Republic of Korea Country Report	109
Chapter 9	Lao People's Democratic Republic Country Report	126
Chapter 10	Malaysia Country Report	138
Chapter 11	Myanmar Country Report	151
Chapter 12	New Zealand Country Report	163
Chapter 13	Philippines Country Report	178
Chapter 14	Singapore Country Report	189
Chapter 15	Thailand Country Report	201
Chapter 16	Viet Nam Country Report	213
Chapter 17	United States Country Report	230

List of Figures

Figure 1.1	Final Energy Consumption by Sector, LCET–CN Scenario (1990–2050)	2
Figure 1.2	Final Energy Consumption by Fuel Type, LCET–CN Scenario (1990–2050)	3
Figure 1.3	Primary Energy Supply by Fuel Type, LCET–CN Scenario (1990–2050)	4
Figure 1.4	Electricity Generation by Fuel Type, LCET–CN Scenario (1990– 2050)	5
Figure 1.5	Total CO2 Emissions by Fuel Type, LCET–CN Scenario (1990– 2050)	6
Figure 2.1	Final Energy Consumption by Sector, LCET-CN Scenario, 1990–2050	17
Figure 2.2	Final Energy Consumption by Fuel, LCET-CN Scenario, 1990– 2050	17
Figure 2.3	Electricity Generation by Fuel, LCET-CN Scenario, 1990–2050	18
Figure 2.4	Total Primary Energy Supply by Fuel Type, LCET-CN Scenario, 1990–2050	19
Figure 2.5	Total Emissions by Fuel Type, LCET-CN Scenario, 1990–2050	19
Figure 3.1	Total Final Energy Consumption by Sector, LCET-CN Scenario	28
Figure 3.2	Total Final Energy Consumption by Fuel, LCET-CN Scenario	28
Figure 3.3	Total Electricity Generation, LCET-CN Scenario	29
Figure 3.4	Total Primary Energy Supply by Fuel, LCET-CN Scenario	30
Figure 3.5	Energy Indicators, LCET-CN Scenario	30
Figure 3.6	Emissions Reduction under the BAU, APS5, and LCET-CN Scenarios	31
Figure 4.1	Assumptions of the Average Annual Growth Rate of Gross Domestic Product and Population	42
Figure 4.2	Final Energy Consumption by Fuel Type, LCET Scenario (1990– 2050)	43
Figure 4.3	Final Energy Consumption by Sector, LCET Scenario (2000– 2050)	44

Figure 4.4	Total Primary Energy Supply by Fuel Type, LCET Scenario (1990–2050)		
Figure 4.5	Power Generation by Source, LCET Scenario (1990–2050)	47	
Figure 4.6	Energy Indicators, LCET Scenario (1990–2050)	48	
Figure 4.7	CO_2 Emissions by Fossil Fuel Type, BAU Scenario (1990–2050)	48	
Figure 4.8	Emissions by Fossil Fuel Type, LCET Scenario (1990–2050)	49	
Figure 5.1	Total Final Energy Consumption by Sector, LCET–CN Scenario	60	
Figure 5.2	Total Final Energy Consumption by Fuel Type, LCET–CN Scenario	61	
Figure 5.3	Total Primary Energy Supply, LCET–CN Scenario	62	
Figure 5.4	Electricity Generation, LCET–CN Scenario	64	
Figure 5.5	CO ₂ Emissions Trajectory, BAU vs LCET–CN Scenarios	65	
Figure 5.6	Energy Indicators, LCET–CN Scenario	66	
Figure 6.1	Cofiring Implementation in Indonesia in 2022	75	
Figure 6.2	Location of Diesel-fired Power Plants	76	
Figure 6.3	Final Energy Consumption by Sector, 1990–2050	78	
Figure 6.4	Share of Final Energy Consumption by Energy Type, 1990– 2050	79	
Figure 6.5	Production of Electricity LCET–CN Scenario,1990–2050	81	
Figure 6.6	Comparison of Electricity Production in BAU and LCET–CN Scenarios, 2050	81	
Figure 6.7	Total Primary Energy Supply, LCET–CN Scenario,1990–2050	82	
Figure 6.8	Comparison Total Primary Energy Supply BAU and LCET–CN Scenarios, 2050	83	
Figure 6.9	Emissions in LCET–CN Scenario,1990–2050	84	
Figure 6.10	Comparison of CO2 Emissions between BAU and LCET–CN Scenarios, 1990–2050	85	
Figure 6.11	Comparison of Fuel Cost in BAU and LCET–CN Scenarios	87	
Figure 6.12	Comparison of Additional Capacity of Power Plants in BAU and LCET–CN Scenarios	87	
Figure 6.13	Construction Costs of Power Plants	88	
Figure 6.14	Construction Cost by Type of Generation	89	

Figure 6.15	Cost of CCS in LCET–CN Scenario in 2050	90
Figure 7.1	Population and GDP Prospects	95
Figure 7.2	Final Energy Consumption by Source	96
Figure 7.3	Final Energy Consumption by Sector	97
Figure 7.4	Power Generation, BAU, AP, and LCET–CN Scenarios	98
Figure 7.5	Primary Energy Supply, BAU, AP, and LCET–CN Scenarios	99
Figure 7.6	Fossil Fuel Reduction in Primary Energy Supply, BAU, APS, and LCET–CN Scenarios	100
Figure 7.7	Carbon Dioxide Emissions from Fossil Fuel Combustion, BAU, AP, and LCET–CN Scenarios	101
Figure 7.8	Hydrogen Demand	102
Figure 7.9	Fuel Cost	103
Figure 7.10	Power Generation Investment	104
Figure 7.11	Cost in BAU and LCET–CN, 2050	105
Figure 8.1	Final Energy Consumption by Sector: LCET–CN Scenario	111
Figure 8.2	Final Energy Consumption by Energy: LCET–CN Scenario	111
Figure 8.3	Power Generation by Energy Source: LCET–CN Scenario	112
Figure 8.4	Total Primary Energy Supply: LCET–CN Scenario	113
Figure 8.5	CO2 Emissions: LCET–CN Scenario	114
Figure 8.6	Hydrogen Roadmap: Targets	
Figure 9.1	Final Energy Consumption by Sector, LCET-CN Scenario, 2000–2050	127
Figure 9.2	Final Energy Consumption by Fuel, LCET-CN Scenario, 2000– 2050	128
Figure 9.3	Electricity Generation by Fuel, LCET-CN Scenario, 2000–2050	129
Figure 9.4	Primary Energy Supply by Fuel, LCET-CN Scenario, 2000– 2050	129
Figure 9.5	Primary Energy Supply, LCET-CN Scenario, 2019–2050	130
Figure 10.1	Final Energy Consumption by Sector, LCET–CN Scenario (1990–2050)	139
Figure 10.2	Final Energy Consumption by Fuel Type, LCET–CN Scenario (1990–2050)	140

Figure 10.3	Electricity Generation by Fuel Type, LCET–CN Scenario (1990– 2050)		
Figure 10.4	Total Primary Energy Supply by Fuel Type, LCET–CN Scenario (1990–2050)	142	
Figure 10.5	Total CO2 Emissions by Fuel Type, LCET–CN Scenario (1990– 2050)	143	
Figure 11.1	Final Energy Consumption by Sector under the LCET-CN Scenario, 1990–2050	152	
Figure 11.2	Final Energy Consumption by Fuel under the LCET-CN Scenario, 1990–2050	153	
Figure 11.3	Electricity Generation by Fuel, LCET-CN Scenario, 1990–2050	154	
Figure 11.4	Total Primary Energy Supply by Fuel Type under the LCET-CN Scenario, 1990–2050	155	
Figure 11.5	Total Emissions by Fuel Type under the LCET-CN Scenario, 1990–2050	156	
Figure 12.1	Total Final Energy Consumption, BAU, AP, and LCET-CN Scenarios	164	
Figure 12.2	Final Energy Consumption by Sector, LCET–CN Scenario (1990–2050)	165	
Figure 12.3	Final Energy Consumption by Fuel Type, LCET–CN Scenario (1990–2050)	166	
Figure 12.4	Electricity Generation by Fuel, LCET–CN Scenario (1990–2050)	167	
Figure 12.5	Total Primary Energy Supply by Fuel Type, LCET–CN Scenario (1990-2050)	168	
Figure 12.6	Total CO2 Emissions by Fuel Type, LCET–CN Scenario (1990– 2050)	169	
Figure 12.7	CO2 Reduction, BAU, AP, and LCET–CN Scenarios	169	
Figure 13.1	Final Energy Consumption by Sector under the LCET-CN Scenario, 1990–2050	179	
Figure 13.2	Final Energy Consumption by Fuel under the LCET-CN Scenario, 1990–2050	180	
Figure 13.3	Electricity Generation by Fuel under the LCET-CN Scenario, 1990–2050	181	
Figure 13.4	Total Primary Energy Supply by Fuel Type under the LCET-CN Scenario, 1990–2050	182	

Figure 13.5	Total Emissions by Fuel Type under the LCET-CN Scenario, 1990–2050		
Figure 14.1	Final Energy Consumption by Sector, LCET–CN Scenario (2019–2050)	190	
Figure 14.2	Final Energy Consumption by Fuel, LCET–CN Scenario (2019– 2050)	191	
Figure 14.3	Electricity Generation by Fuel Type, LCET–CN Scenario (2019– 2050)	192	
Figure 14.4	Total Primary Energy Supply by Fuel Type, LCET–CN Scenario (2019–2050)	193	
Figure 14.5	Total CO2 Emissions by Fuel Type, LCET–CN Scenario (2019– 2050)	194	
Figure 15.1	Final Energy Consumption by Sector, BAU and LCET–CN Scenarios	202	
Figure 15.2	Power Generation by Fuel Type, LCET–CN Scenario	203	
Figure 15.3	Primary Energy Supply by Source, BAU and LCET–CN Scenarios	204	
Figure 15.4	Carbon Dioxide Emissions from Energy Consumption, BAU and LCET–CN Scenarios	205	
Figure 15.5	Hydrogen Demand	206	
Figure 15.6	Change of Fuel Cost 2019 to 2050, Comparison between BAU and LCET–CN Scenarios	209	
Figure 15.7	Overall Cost Comparison between BAU and LCET–CN Scenarios	212	
Figure 16.1	Final Energy Consumption by Sector, LCET–CN Scenario, 1990–2050	215	
Figure 16.2	Final Energy Consumption by Fuel Type, LCET–CN Scenario, 1990–2050	217	
Figure 16.3	Primary Energy Supply, LCET–CN Scenario, 1990–2050	218	
Figure 16.4	Power Generation by Fuel Type, LCET–CN Scenario, 1990– 2050	219	
Figure 16.5	Evolution of Carbon Dioxide Emissions, BAU and LCET–CN Scenarios, 1990, 2019, and 2050	220	
Figure 17.1	Gross Domestic Product and Population	232	

Figure 17.2	Final Energy Consumption by Sector under BAU Scenario			
Figure 17.3	Final Energy Consumption by Fuel Type under BAU Scenario			
Figure 17.4	Power Generation under the BAU Scenario	236		
Figure 17.5	Final Energy Consumption by Sector in BAU vs. AP Scenarios	237		
Figure 17.6	Total Primary Energy Consumption in BAU vs. AP Scenarios	238		
Figure 17.7	Total Primary Energy Consumption by Fuel in BAU vs. AP Scenarios	239		
Figure 17.8	Power Generation under AP Scenario	240		
Figure 17.9	Final Energy Consumption by Sector	241		
Figure 17.10	Total Primary Energy Supply	242		
Figure 17.11	Power Generation	243		
Figure 17.12	$\rm CO_2$ Emissions Trends in BAU, AP, and LCET–CN Scenarios	245		
Figure 17.13	Fuel Costs Savings in 2050 in BAU vs. LCET–CN Scenarios	247		
Figure 17.14	Power Plant Capacity Additions under BAU vs. LCET–CN Scenarios	248		
Figure 17.15	Power Plant Construction Investment under BAU vs. LCET–CN Scenarios	248		
Figure 17.16	CCS Costs under BAU vs. LCET–CN Scenarios in 2050	249		

List of Tables

Table 1.1	Fuel Cost Assumptions	7
Table 1.2	Fuel Costs in BAU Scenario	8
Table 1.3	Fuel Costs in LCET–CN Scenario	9
Table 1.4	Investment Cost and Capacity Factors	9
Table 1.5	Power Generation Investment Costs: BAU Scenario	10
Table 1.6	Power Generation Investment Costs: LCET–CN Scenario	11
Table 1.7	Investment Cost of Carbon Capture and Storage for LCET– CN Scenario in 2050	12
Table 1.8	Cost Comparison between LCET–CN and BAU Scenarios (2019–2050)	13
Table 2.1	Assumed Fuel Costs	20
Table 2.2	Assumed Construction Costs of Power Plants	20
Table 2.3	Assumed Capacity Factors of Power Plants	21
Table 2.4	Fuel Cost Comparison, BAU and LCET-CN Scenarios, 2050	21
Table 2.5	Power Plant Cost Comparisons, BAU and LCET-CN Scenarios, 2050	23
Table 2.6	Total Investment Cost of CCS for LCET-CN Scenario in 2050	24
Table 2.7	Overall Total Investment Costs for BAU and LCET-CN Scenarios in 2050	24
Table 3.1	Emissions, BAU Scenario, 2030	26
Table 3.2	BAU Scenario Emissions and NDC Emissions Reductions	27
Table 3.3	Assumed Fuel Costs	32
Table 3.4	Assumed Construction Costs of Power Plants	32
Table 3.5	Assumed Capacity Factors of Power Plants	32
Table 3.6	Fuel Cost Comparison, BAU and LCET-CN Scenarios	33
Table 3.7	Power Plant Cost Comparison, BAU and LCET-CN Scenarios, 2050	34
Table 3.8	Total Investment Cost of Carbon Capture and Storage for the LCET-CN Scenario, 2050	35

Table 3.9	Total Investment Cost	36
Table 4.1	Annual Growth Rates of Gross Domestic Product and Population	41
Table 4.2	Fuel Cost Assumptions	50
Table 4.3	Fuel Cost in BAU and LCET Scenarios	50
Table 4.4	Power Plant Assumptions	51
Table 4.5	Total Investment Cost of Power Plants	52
Table 4.6	Total Investment Cost of CCS, LCET Scenario	53
Table 4.7	Overall Increased Costs in 2050 Compared to 2019	53
Table 5.1	Cost Comparison across the BAU and LCET–CN Scenarios	68
Table 6.1	Minimum Target of Biodiesel	73
Table 6.2	Minimum Target of Bioethanol	74
Table 6.3	Assumptions for Fossil Energy Prices in 2019 and 2050	86
Table 6.4	Energy Saving in BAU and AP Scenarios	91
Table 6.5	Overall Cost	91
Table 8.1	Hydrogen Roadmap: Targets	116
Table 8.2	Hydrogen Production	117
Table 8.3	Assumptions for Fuel Costs	118
Table 8.4	Assumptions for Construction Cost of Power Plants	118
Table 8.5	Assumptions for Capacity Factors of Power Plants	119
Table 8.6	Total Investment by Energy Source, BAU vs LCET–CN Scenarios	120
Table 8.7	Total Investment in Power Plants, BAU vs LCET–CN Scenarios	121
Table 8.8	Total Investment for CCS under LCET–CN Scenario in 2050	122
Table 8.9	Cost Comparison: BAU vs LCET–CN Scenarios in 2050	123
Table 9.1	Assumed Fuel Costs	131
Table 9.2	Assumed Construction Costs of Power Plants	131
Table 9.3	Assumed Capacity Factors of Power Plants	132
Table 9.4	Fuel Cost Comparison, BAU and LCET-CN Scenarios, 2050	133

Table 9.5	Power Plants Cost Comparison, BAU and LCET-CN Scenarios, 2050		
Table 9.6	Total Investment Cost of Carbon Capture and Storage for the LCET-CN Scenario, 2050	135	
Table 9.7	Overall Total Investment Cost for BAU and LCET-CN Scenarios, 2050	136	
Table 10.1	Fuel Cost Assumptions	144	
Table 10.2	Construction Cost of Power Plants Assumptions	145	
Table 10.3	Capacity Factor of Power Plants Assumptions	145	
Table 10.4	Total Investment Fuel Cost Comparison, BAU and LCET–CN Scenarios in 2050	146	
Table 10.5	Total Investment Power Plants Cost Comparison, BAU and LCET–CN Scenarios in 2050	147	
Table 10.6	Total Investment Cost of Carbon Capture and Storage for LCET–CN Scenario in 2050	148	
Table 10.7	Overall Total Investment Cost for BAU and LCET–CN Scenarios in 2050	149	
Table 11.1	Assumed Fuel Costs	157	
Table 11.2	Assumed Construction Costs of Power Plants	157	
Table 11.3	Assumed Capacity Factors of Power Plants	158	
Table 11.4	Total Investments in Fuel under the BAU and LCET-CN Scenarios, 2050	158	
Table 11.5	Total Investment in Power Plants under the BAU and LCET- CN Scenarios, 2050	160	
Table 11.6	Overall Total Investment Costs for the BAU and LCET-CN Scenarios, 2050	161	
Table 12.1	Fuel Cost Assumptions	170	
Table 12.2	Construction Cost of Power Plants Assumptions	171	
Table 12.3	Capacity Factor of Power Plants Assumptions	171	
Table 12.4	Total Investment Fuel Cost Comparison, BAU and LCET–CN Scenarios in 2050	172	
Table 12.5	Total Investment Power Plants Cost Comparison, BAU and LCET–CN Scenarios in 2050	173	
Table 12.6	Total Investment Cost of CCS for LCET–CN Scenario in 2050	174	

Table 12.7	Overall Total Investment Cost for BAU and LCET–CN Scenarios in 2050		
Table 13.1	Assumed Fuel Costs	184	
Table 13.2	Assumed Construction Costs per Each Power Source	184	
Table 13.3	Total Fuel Costs	184	
Table 13.4	Power Plant Costs	185	
Table 13.5	Overall Investment Costs	186	
Table 14.1	Fuel Cost Assumptions	195	
Table 14.2	Construction Cost of Power Plants Assumptions	195	
Table 14.3	Construction Cost of Power Plants Assumptions	195	
Table 14.4	Comparison of Total Fuel Cost, BAU and LCET–CN Scenarios in 2050	196	
Table 14.5	Fuel Cost Assumptions	197	
Table 14.6	Total Investment Cost under BAU and LCET–CN Scenarios in 2050	198	
Table 15.1	Fuel Cost Assumptions	207	
Table 15.2	Construction Cost of Power Plants Assumptions	207	
Table 15.3	Capacity Factor of Power Plants Assumptions	208	
Table 15.4	Total Investment Power Plants Cost Comparison, BAU and LCET–CN Scenarios in 2050	210	
Table 15.5	Total Investment Cost of CCS for LCET–CN Scenario in 2050	211	
Table 16.1	Mitigation Targets and Related Legal Documents	214	
Table 16.2	Assumptions on Fuel Costs	221	
Table 16.3	Fuel Costs in BAU Scenario	222	
Table 16.4	Fuel Costs in LCET–CN Scenario	223	
Table 16.5	Investment Cost and Capacity Factors	223	
Table 16.6	Power Generation Investment Costs – BAU Scenario	224	
Table 16.7	Power Generation Investment Costs – LCET–CN Scenario	225	
Table 16.8	Cost Comparison between LCET–CN and BAU Scenarios in 2050	226	
Table 171	Cost Comparison of BAU vs. LCET–CN Scenario	250	

Introduction

EAS Energy Outlook Update and Analysis

The EAS Energy Outlook, which includes 17 EAS countries excluding Russia, has been updated every 2 years. The last update occurred in 2021–22, with the next update planned for 2023-24. Based on the updated models from 2021–22, ERIA conducted two studies in 2022–23:

- 1. Review of the Existing LCET-CN Scenario: This involved improving the Low Carbon Energy Transition Carbon Neutral (LCET-CN) scenario where possible.
- 2. Cost Comparison Analysis: This compared the Business as Usual (BAU) scenario with the revised LCET-CN scenario.

To support these efforts, ERIA, with assistance from IEEJ, held two working group meetings for the EAS Energy Outlook and Energy Saving Potential in January and May 2023.

Review of the Existing LCET-CN Scenario

ERIA requested working group members to review several aspects:

- Energy-saving policies in the LCET-CN compared to BAU and the Alternative Policy Scenario (APS).
- Policies for electric vehicle (EV) penetration.
- Increased use of renewable energy, particularly solar PV and wind power.
- Hydrogen demand and supply perspectives.
- Availability of Carbon Capture and Storage (CCS).

As a result, some members successfully improved their LCET-CN scenarios.

Cost Comparison Analysis

ERIA asked working group members to estimate the energy costs for both the BAU and LCET-CN scenarios to determine which would incur higher costs. Energy costs included:

- Fuel costs (fossil fuels and hydrogen).
- Power investment costs per power source.
- CCS costs.
- Energy-saving costs (though this was omitted due to insufficient data).

Fuel Costs Estimation Process

- 1. Calculate the increased amount of each fuel between 2019 and 2050.
- 2. Multiply the assumed unit cost of each fuel by the increased amount in 2050.
- 3. Compare the estimated fuel costs between BAU and APS.

Assumed unit costs for 2050 (2019 constant price) were:

	2019/2020		2050 (2019 Constant Price)	
Coal	80.03	US\$/ton	98	US\$/ton
Oil	41	US\$/bbl	100	US\$/bbl
Gas	7.77	US\$/MMBTU	7.5	US\$/MMBTU
Hydrogen	0.8	US\$/Nm ³	0.1	US\$/Nm ³
CCS	-	US\$/CO ₂ ton	70	US\$/CO2ton

Power Capital Cost Estimation Process

- 1. Calculate the increase in power generation per source from 2019 to 2050.
- 2. Calculate additional power capacity needed, considering the capacity factor of each power source.
- 3. Multiply the assumed unit capital cost by the necessary increase in power capacity.
- 4. Compare the estimated power capital costs between BAU and LCET-CN.

Assumed capacity factors and unit capital costs for 2050 were:

	2019		by 2050	
Coal	75	%	75	%
Oil	75	%	75	%
Gas	75	%	75	%
Hydrogen	-	%	75	%
Nuclear	80	%	80	%
Hydro	60	%	60	%
Geothermal	75	%	75	%
Solar	15	%	17	%
Wind	25	%	30	%
2Biomass	75	%	75	%

	2019		by 2050	
Coal	1,500	US\$/KW	1,525	US\$/KW
Oil	_	US\$/KW	-	US\$/KW
Gas	700	US\$/KW	700	US\$/KW
Hydrogen		US\$/MW	700	US\$/KW
Nuclear	4,500	US\$/KW	3,575	US\$/KW
Hydro	2,000	US\$/KW	2,223	US\$/KW
Geothermal	4,000	US\$/KW	4,256	US\$/KW
Solar	1,600	US\$/KW	307	US\$/KW
Wind	1,600	US\$/KW	1,235	US\$/KW
Biomass	2,000	US\$/KW	3,019	US\$/KW

And the assumed unit capital cost of each power source were:

BAU will basically increase thermal power plants; on the other hand, LCET-CN will increase renewable, nuclear, and hydrogen power plants.

For CCS cost, ERIA requested the members to estimate CCS treatment costs. Theoretically CCS consists of following three activities: capture CO_2 , transport CO_2 and Store CO_2 . But this analysis assumes CCS running cost of CO_2 defined as US\$/CO₂ ton. The estimation process is shown below:

CCS Cost Estimation Process

- 1. Obtain CO_2 emissions for coal and gas in 2050 from the EAS Energy Outlook.
- 2. Calculate the share of coal and gas consumption in power generation.
- 3. Calculate CO_2 emissions by the power sector.
- 4. Multiply the CCS share of coal and gas power generation by the CO_2 emissions.
- 5. Multiply the unit cost of CCS by the CO_2 emissions treated by CCS.

Cost Comparison Results

The comparison considered:

- Fuel Costs: Higher for BAU due to reliance on fossil fuels.
- Power Capital Costs: Higher for LCET-CN due to increased renewable and hydrogen power plants, which have lower capacity factors than thermal plants.
- CCS Costs: Applicable only to the LCET-CN scenario.

Generally, the fuel costs for LCET-CN are much lower than for BAU. However, power capital costs are higher for LCET-CN due to the need for substantial renewable energy capacities. This analysis provides valuable insights for policymakers, academia, and private/public companies in the EAS region regarding the pathway to carbon neutrality.