List of Figures

Figure 2.1	Development Stages of Energy Management System	8
Figure 2.2	Applicability of Energy Management System and	9
-	Technology Components	
Figure 2.3	Flow of Utility Services	10
Figure 2.4	Screen Shots of Trend Analysis (sample)	12
Figure 2.5	Screen Shots of Analysing Energy-Efficiency Measures	12
-	(sample)	
Figure 2.6	Annual Trend of Energy Demand (sample)	14
Figure 2.7	Daily Trend of Energy Demand in Each Season (sample)	15
Figure 2.8	Pie Chart to Indicate the Share of Energy Use among	15
C	Appliances (sample)	
Figure 2.9	Specific Energy Consumption as an Example of Energy	16
C	Performance Indicator	
Figure 2.10	Fixed Part, Variable Part of Energy Consumption (sample)	18
Figure 3.1	Applicability of FEMS, BEMS, and HEMS	20
Figure 3.2	Image of Factory Energy Management System Applicability	21
Figure 3.3	FEMS's Coverage of Supply-Side and Demand-Side	22
-	Facilities	
Figure 3.4	Matrix of Applicable Energy-Saving Technologies and Types	23
-	of Industry	
Figure 3.5	Compressed Air System	24
Figure 3.6	Energy-Saving Control for Compressed Air System	25
Figure 3.7	Concept of Proportional–Integral–Derivative Control	26
Figure 3.8	Controlling the Number of Units	26
Figure 3.9	Relation between Air Ratio and Heat Loss	28
Figure 3.10	Air Ratio and Exhaust Gas Temperature	29
Figure 3.11	Overview of Heat-Source System	30
Figure 3.12	Cooling Water Temperature	31
Figure 3.13	Boiler and Turbine Generator Cogeneration System	32
Figure 3.14	Distillation Tower System	33
Figure 3.15	Product Quality Control	34
Figure 3.16	Positioning of Case Study Sites in the Mapping of Energy-	35
	Saving Technologies	
Figure 3.17	Case Study Site	37
Figure 3.18	Cogeneration Facility Overview	38
Figure 3.19	Gas Turbine	38
Figure 3.20	Diagram of Green Power Asia Pte Ltd's Cogeneration	40
	System	
Figure 3.21	Operation Optimisation	41
Figure 3.22	Two Options of Benefit from Reducing the Steam	43
	Production	
Figure 3.23	Proton Perdana	44
Figure 3.24	Location of Proton Tanjung Malim Sdn Bhd	44
Figure 3.25	Bird's-Eye View of Proton Tanjung Malim Sdn Bhd and Its	45
	Compressor System	

Figure 3.26	Diagram of Compressed Air Supply System in the Energy Centre	46
Figure 3.27	Proton's Energy Savings by Compressor Optimisation	47
Figure 3.28	Compressed Air System Energy-Saving Solution	48
Figure 3.29	Reduction of Compressed Air by Controlling Air Pressure at Branch Lines	49
Figure 3.30	Estimation of Energy-Saving Potential	49
Figure 4.1	Air Intake at Machine Room	56
Figure 4.2	Image of Motor Damper	56
Figure 4.3	Recommended Schematics of Air flow with Motor Damper	56
Figure 4.4	Monitor Panel	57
Figure 4.5	Diagram of Chilled Water Supply System	58
Figure 4.6	Simplified Diagram of Chilled Water Supply System	61
Figure 4.7	Simplified Diagram of Air Conditioning and Ventilation	62
Figure 4.8	Annual Electricity Consumption, 2015	63
Figure 4.9	Energy Management Conditions	63
Figure 5.1	Example of Subsidy in Tariff Rates	84
Figure 5.2	Average Electricity Selling Price	85
Figure 5.3	Electricity Price for a Model Factory	86
Figure 5.4	Electric Energy Consumption by Sector, 2013	87
Figure 5.5	Electric Energy Consumption in Industry and Building and	88
	Agriculture Sector, 2013 and 2035 as BAU Scenario	
Figure 5.6	Electric Energy Consumption in Industry Sector, 2035 (BAU	89
	Scenario vs APS)	
Figure 5.7	Electric Energy Consumption in Commercial and Public	90
	Service Sector, 2035 (BAU Scenario vs APS)	
Figure 5.8	Challenges for EMS Deployment and Policy	94
	Recommendation	
Figure 5.9	History of Mandatory Reporting on Energy Management in Japan	95
Figure 5.10	Requirements for Nominating Energy Manager(s) and Energy Officer	96
Figure 5.11	Methodology of Verifying Energy-Saving Effect	96
Figure 5.12	Basic Concept of Energy Service Company Business	97
Figure 5.13	Image of Shared Saving Model	98
Figure 5.14	Image of Guaranteed Saving Model	98
Figure 5.15	Development of Energy-Management-Service-Related	100
-	Business Model	
Figure 5.16	Sector-Wise Pricing	102
Figure 5.17	Time-Wise Pricing	103

List of Tables

Table 4.1	Overview of EVN Head Office	60
Table 4.2	General Information on Annual Energy Use	62
Table 4.3	Evaluation on Energy Management Conditions	64
Table 5.1	Summary of Financial Incentives in some ASEAN Countries	83
Table 5.2	Assumptions of Alternative Policy Scenario	89
Table 5.3	Estimated Potential of Energy Saving through the Deployment of Energy Management System	91