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Chapter 10 

Financing Solar PV Projects: Energy Production Risk Reduction and Debt 

Capacity Improvement 

Romeo Pacudan37 

 

Abstract 
Various risks influence the decision in obtaining financing and determining the cost 

of financing for utility-scale solar photovoltaic (PV) projects in many developing countries. 

One of the risk areas is in the estimation of solar PV energy production, which is significantly 

derived from the uncertainty in solar resource data and measurement. Due to the lack of 

ground-measured data sets, the solar PV industry mainly relies on satellite-derived 

irradiation data to estimate on-site solar energy resource, but modelled data often lacked 

the accuracy to mitigate energy production risks. The use of multiple data sources has been 

increasingly employed and emerging to be the best practice in the solar industry. One of the 

methodologies that combine various sources of data is the measure-correlate-predict 

(MCP) approach, which correlates short-term measured data with long-term reference data 

sets. The study, using the proposed 27 megawatt peak (MWp) solar PV project in Brunei 

Darussalam, evaluates the impact of using correlated irradiation data sets on energy 

production and capital structuring of utility-scale solar PV projects. The study results 

confirm the outcome of other studies—that correlated solar irradiation data sets generate 

superior, high-confidence energy estimates (probability of exceedance at P90 and P99 

levels) than those using satellite-derived data sets. With assumed financial parameters, the 

high-confidence energy estimates from MCP-derived data comfortably satisfy the debt-

service coverage ratios (DSCRs) set by lending institutions and credit rating agencies, as well 

as generate lower levelised production cost of electricity. Also, the study shows that to 

achieve the minimum target DSCR of 1.3x and 1.2x for P90 and P99 energy production levels, 

the share of debt on the overall project capital structure could be further increased by 

around 7% for both cases from a reference debt share of 70%. The use of high-quality data 

sets therefore reduce project risks, increase project financial leverage, and enhance 

financial competitiveness. The government’s support measures that address the issue on 

resource data uncertainty and establishing best practice in data measurement and use in 

project analysis would be crucial in developing solar PV industry in developing countries. 

 

Keywords: Solar irradiation data sets, measure-correlate-predict, probability of exceedance, 

capital structuring 
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1. Introduction 

 

Solar photovoltaic (PV) power generation started to emerge recently in the national 

energy mix of a number of Association of Southeast Asian Nations (ASEAN) countries. This 

development is due to the improvement of solar PV cost competitiveness at the 

international market and the introduction of policies and regulatory frameworks that 

promote the deployment of renewable energy technologies in these countries. This is 

particularly evident in countries that have introduced reforms allowing private sector 

participation in the generation segment of the power industry. Also, due to increasing sizes 

of solar PV projects being planned and implemented in some of these countries, project 

financing or non-recourse financing has been increasingly used as one of the main 

mechanisms to finance utility-scale solar PV projects. 

There exist, however, a number of project risks inherent to solar PV project planning, 

construction, and operation that inhibit the full development of solar energy resource 

potential in these countries. These can be broadly categorised into regulatory, market and 

operational, and technological risks (Lowder et al., 2013; Cleijne and Ruijrok, 2004). These 

risks, as perceived by lenders and investors, could influence in obtaining and determining 

the cost of financing. 

One of the main risk areas is in the estimation of the expected annual production 

of electricity from solar PV power plant at the pre-construction stage of the project (Vignola 

et al., 2013; Schnitzer et al., 2012)—the stage where mobilisation of financial resources is 

crucial. There is a risk that the expected annual production would be overestimated and 

that failure to achieve the target production compromises the project’s ability to meet its 

debt obligations. This risk emanates from the uncertainty in solar resource data, which is 

the focus of this study, and in the models to forecast solar project performance used in the 

feasibility studies. 

Banks and investors providing financing to solar PV projects, on the other hand, 

require higher production probability (higher level of confidence on actual energy 

production) to determine the associated risk with a project’s ability to service its debt 

obligations and other operating costs. 

Due to lack of available ground measurement data near identified project sites in 

many developing countries, project developers often rely on satellite-derived solar 
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irradiation data in their feasibility studies. High-resolution satellite data have, however, high 

uncertainty due to difficulties in integrating key atmospheric parameters in the radiative 

transfer models (McMahan et al., 2013; Vignola et al., 2013; Stoffel et al., 2010).  

To ensure accuracy in solar irradiation estimation and obtain high-confidence 

estimate of solar energy resource, there is an increasing recognition in the solar energy 

industry to analyse and use multiple data sources, instead of relying solely on modelled 

data. One of the measures used that take advantage of using various sources of solar data 

is the measure-correlate-predict (MCP) approach, which correlates short-term data 

measurements with long-term reference data sets (Vignola et al., 2013; Schnitzer et al., 

2012). This methodology has been widely utilised in the wind industry to increase the 

confidence level and minimise uncertainty in long-term wind energy resource assessments 

(Rogers et al., 2005; Carta et al., 2013). 

Thuman et al. (2012) have demonstrated that in the case of several sites in the 

United States (US), the MCP technique could generate data sets with lower uncertainty 

levels compared with satellite-derived irradiation data sets. Schnitzer et al. (2012), on the 

other hand, have shown that high-confidence energy estimates from MCP-derived data 

sets are higher than those from satellite-derived irradiation data. 

This study further extends the analysis by looking into the implications of using 

MCP-derived data sets on the financial structuring of projects. Using the proposed 

expansion of 27 megawatt peak (MWp) solar PV project in Brunei Darussalam, the study 

combines the measured irradiation data on-site with satellite data through the MCP 

methodology, estimate the expected production of the proposed project for cases using 

satellite-derived data and correlated data sets, and compare the high-level confidence 

energy estimates of these cases. From these, the study further investigates capital 

structuring of the project by simulating combinations of project debt-to-equity ratio to 

satisfy the debt-service coverage ratio (DSCR) targets set by lenders and credit rating 

agencies for high-confidence energy estimates. 

The study results could strengthen the case for policymakers to introduce—in 

addition to policy and regulatory frameworks such as feed-in tariff, net metering, 

renewable portfolio standards, and tradable certificates that promote renewable energy 

deployment in general—other support mechanisms that address the lack of information 

and awareness related to energy resource data. 
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2. Methodology and data 

In quantifying the impact of using a bankable solar radiation data set on solar PV 

project’s financial leverage, the study carried out the following methodological approach: 

(i) establishment of solar irradiation data sets, with on-site measured data as the base and 

satellite-based data as reference data sets in deriving a forecast data derived from MCP 

methodology, as well as quantification of their associated resource measurement 

uncertainties; (ii) estimation of the energy yield of the solar PV project case studies with 

these two data sets; (iii) estimation of energy production at higher confidence levels based 

on the overall project uncertainty levels; (iv) estimation of the potential improvement of 

the project’s debt capacity based on a target DSCR for the two data sets using a simple cash 

flow model. These are further explained in the following subsections. 

 

2.1. Project case study 

The above methodological approach is applied to the 27 MWp expansion study of 

the Tenaga Suria Brunei (TSB) project. The TSB s a 1.2 MWp solar PV power generation 

demonstration project, which is jointly implemented by the Government of Brunei 

Darussalam and Mitsubishi Corporation. The project is situated in Seria, Belait District with 

global coordinates of 4.61°N, 114.34°E, and an altitude of 4.6 metres above mean sea level. 

One of the core objectives of the TSB project is to identify the most suitable and 

high-performance PV technologies that are suited for local meteorological conditions 

(Mitsubishi Corporation, undated). This project was interconnected to the grid and 

commenced operation in May 2010. The demonstration phase was performed in May 2010 

and October 2013 in which the Mitsubishi Corporation and the Department of Electrical 

Services jointly carried out the operation and maintenance services, data collection, and 

analysis (Pacudan, 2015a). At present, the project is being operated by the Department of 

Electrical Services with continued technical support from the Mitsubishi Corporation. 

The Brunei National Energy Research Institute carried out a study to assess the 

potential expansion of the TSB project. The study identified a total land area of more than 

24 hectares in three plots adjacent and within close proximity to the sites that are suitable 

and available for solar PV development. Using polycrystalline solar PV modules, a minimum 

of 27 MWp capacity could be potentially developed and added to the existing TSB project 
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(Pacudan, 2015b). 

 

2.2. Solar irradiation data sets 

The radiant power from the sun is known as the total solar irradiance, which is 

estimated at the mean earth–sun distance to be 1,366 ± 7 W/m2 with the variation 

attributed to the 11-year sunspot cycle, while on the other hand, due to the earth’s elliptical 

orbit, the solar radiation reaching at the top of the atmosphere also varies annually 

between 1,415 W/m2 to 1321 W/m2 (Stoffel et al., 2010; Paulescu et al., 2013). The solar 

irradiance that is available at the top of the earth’s atmosphere is known as the 

extraterrestrial solar radiation. When the solar radiation passes through the earth’s 

atmosphere, its spectral distribution is modified by absorption and scattering processes, 

and separated into different components (Stoffel et al., 2010). The direct normal irradiance 

is the part of the solar radiation that directly reaches the earth’s surface and normal to the 

sun’s position; the diffuse horizontal irradiance is the part of the radiation scattered in the 

atmosphere as measured on a horizontal surface. The sum of the direct and diffuse 

irradiation is known as the global horizontal irradiance (GHI). Energy production from solar 

PV power facilities are estimated using engineering simulation tools and GHI data sets 

(Coimbra et al., 2013; Stoffel et al., 2010). 

At present, there are various sources of GHI data used by project developers in solar 

PV project preparation stage, and these are (i) modelled data, (ii) reference station data, 

and (iii) on-site data. Modelled data consist of a combination of satellite-modelled, 

numerically modelled, and back-filled data sets; reference station data are data sets 

collected from international, national, regional, and state level surface-based 

measurements; while on-site data are those collected through on-site solar measurement 

and monitoring campaigns (Schnitzer et al., 2012; McMahan et al., 2013). 

On-site measurements are the most accurate data set for project analysis because 

they provide site-specific data with known technical details and management scheme, and 

the level of measurement uncertainty is relatively low (Stoffel et al., 2010; Vignola et al., 

2013). Most on-site measurements, however, have shorter record period and do not 

capture the long-term historical climate trend. Surface reference stations have also higher 

accuracy and may have longer period of data record. These stations are sparsely distributed 
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and, in most cases, they are not located within close proximity to project sites. In addition, 

some reference stations have also poor maintenance practices. Modelled data have the 

highest measurement uncertainty. To establish bankable data sets, the objective is to 

combine different data sources to create a reliable, long-term record of irradiances at the 

project site (Vignola et al., 2013). 

 

2.2.1. On-site measured data 

Meteorological parameters were monitored and analysed during the 

demonstration phase of the TSB project. Two first class pyranometers were installed 

together on-site with other sensors to measure other meteorological variables. On-site 

data were collected by the Department of Electrical Services and analysed by the Mitsubishi 

Corporation for the period 2010-2014. An independent review and analysis were carried 

out by Pacudan (2015a). The data is collected during a short period of time and do not 

encapsulate long-term trends. 

The measured global solar irradiation in terms of daily average for each month is 

shown in Figure 10.1. The global solar irradiation pattern reflects the trend of the weather 

pattern of Brunei Darussalam, which is affected by two monsoon seasons—the northeast 

monsoon, which starts in December; and the southwest monsoon, which begins in June. 

The solar irradiation is lowest during the monsoon seasons and highest during the dry 

seasons. 

The daily solar irradiation has the highest peak of 5.7 kWh/m2 (kilowatt-

hour/square meters) in March, then it goes down to around 5 kWh/m2 in June, before it 

goes to another peak of 5.3 kWh/m2 in August. From August, the irradiation starts to 

fluctuate downward until reaching the lowest level in January. The average daily irradiation 

for the period is 5.1 kWh/m2 with an average annual sum of 1,857.4 kWh/m2. 

 

2.2.2. Reference irradiation data 

In most developing countries, including Brunei Darussalam, potential project sites 

are often not situated within close proximity to high-quality meteorological stations. 

Zelenka et al. (1999) have shown that satellite-derived solar radiation data provide a better 

estimate of the hourly solar resource than those extrapolated data from high-quality 

ground station if the site of interest is situated more than 25 kilometres from the 
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measurement station. Project developers in developing countries therefore rely on 

modelled data for their solar project analysis. 

Modelled data that are available and widely used in developing countries include 

the National Aeronautics and Space Administration (NASA) Surface Meteorology and Solar 

Energy (SSE) data and information, Meteonorm, Photovoltaic Geographical Information 

System (PVGIS), and others (Stoffel et al., 2010; Vignola et al., 2013; Yates and Hibberd, 

2010). The NASA SSE data is publicly available and free of charge while other data sets are 

offered for a fee. This study uses the 22-year NASA SSE data set for the TSB site as the 

baseline data for the analysis. 

The SSE data set is based on 1°×1° longitude latitude grid and provides estimates of 

global horizontal, direct normal, and diffuse horizontal mean monthly daily total irradiances 

and other meteorological parameters (Myers, 2009). While the 1° grid is relatively large for 

site analysis, project sites in the United States within the grid tend to follow the variations 

in solar resource and track closely with those from the National Solar Radiation Database 

of the National Renewable Energy Laboratory (Vignola et al., 2013). The NASA SSE used a 

physical model in estimating the solar irradiance, which is fairly accurate particularly when 

various atmospheric parameters are known (Vignola et al., 2013). 

The site-specific solar irradiation data (4.61°N, 114.34°E) from NASA SSE were 

downloaded from the NASA website (https://eosweb.larc.nasa.gov/). NASA SSE’s data sets 

tend to underestimate the solar irradiation during fall months while overestimate during 

the other seasons. The seasonal pattern is, however, similar to that of on-site data. This is 

shown in Figure 10.1. The average daily irradiation is 5.24 kWh/m2, which is around 3% 

higher than the measured irradiation from TSB. The main implication is that using NASA 

SSE data for project planning would tend to overestimate the energy yield of a project. 
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Figure 10.1: Average Daily Global Horizontal Irradiation 

 
kWh = kilowatt hour; NASA SSE = National Aeronautics and Space Administration Surface Meteorology and 
Solar Energy. 
Source: Prepared by the author. 
 
 

2.2.3. Correlated irradiation data 

To increase accuracy, confidence, and reduce uncertainty, short-term ground- 

measured data are often validated using reference data sets, which in this case is the NASA 

SSE data. The method used in the study is the MCP technique. The MCP approach and its 

variants have been widely applied in the wind (Bass et al., 2000; Rogers et al., 2005; Carta 

et al., 2013) and solar industries (Meyer et al., 2008; Hidalgo and Mau, 2012; Thuman et 

al., 2012; Vignola et al., 2013; Gueymard and Wilcox, 2009). The MCP technique correlates 

short-term data with site-specific seasonal and diurnal characteristics with data set having 

a long period of record and consistent long-term annual trend so that a relationship 

between them is established. 

Various MCP methods are used in wind and solar energy analysis. The most basic is 

the linear regression method, which is employed in this paper. Under this approach the 

predictor equation is given by the following: 

𝐼 =  𝛽0 + 𝛽1𝐼 

Where; 𝐼 is the reference GHI in kWh/m2, 𝐼 is predicted GHI also in kWh/m2 at 

the target site, and 𝛽0  and 𝛽1  are the estimated intercept and slope of the linear 

relationship. 

The linear regression used in the analysis is a model with a single independent 

variable 𝑥 that has a relationship with a response variable 𝑦, which is a straight line. The 
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simple linear regression model is given by 

�̂� =  𝛽0 + 𝛽1𝑥 +  𝜀 

Where the intercept𝛽0  and the slope 𝛽1  are unknown constants and 𝜀  is a 

random error. The errors are assumed to have zero mean and unknown variance 𝜎2. The 

equation is also known as the least square regression equation since the criterion used to 

select the best-fitting line is the least sum of the squares of the residuals. The correlation 

coefficient evaluates the goodness of the fitting of data considered. This value can vary in 

the range of -1 and +1 for the strong correlation between the 2 variables 𝑥 and 𝑦. The 

coefficient of determination, 𝑅2, indicates the goodness of fit of the model. This is also 

called as the proportion of variation explained by the regressor 𝑥 . 𝑅2  value varies 

between 0 and 1. 

The values of 𝛽0 and 𝛽1 were determined from the simple linear regression of the 

short-term target site measurements (TSB site) against the reference data (NASA SSE). The 

derived coefficients are the following: 𝛽0 = 0.7259 and 𝛽1 = 0.8336. 

The reference data are then used in the regression equation to predict the historical 

climate at the TSB site. Both strengths of the two data sets are being captured and that the 

uncertainty of the long-term irradiation estimate is being reduced. 

Results of the analysis also confirm the findings of Rogers et al. (2005) that when 

using linear regression, the predicted mean irradiation at the target site will be close to the 

value of the measured mean. In this case, the predicted mean of correlated data and 

measured data have the same value at 5.1 kWh/m2. 

Figure 10.2 shows both the NASA SSE and predicted solar irradiation data. The data 

shown are for the incident global radiation on the collector plane with a tilt angle of 5° since 

solar PV modules at TSB site are inclined at an angle corresponding to the site’s latitude. 

The satellite data is 2.8% higher than the correlated data. 
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Figure 10.2: Average Daily Incident Global Irradiation at 5° Inclined Plane 

 

kWh= kilowatt hour; NASA SSE = National Aeronautics and Space Administration Surface Meteorology and 
Solar Energy. 
Source: Prepared by the author. 
 
 

2.3. Solar resource uncertainty and measurement uncertainty 

Solar resource uncertainty comprises the following four main components (with 

uncertainty value ranges shown in the parenthesis): (i) spatial variability (0%–1%), (ii) 

representativeness of monitoring (0.5%–2%), (iii) inter-annual variability (2%–5%), and iv) 

measurement uncertainty (2%–15%) (Schnitzer et al., 2012). The focus of this study is the 

measurement uncertainty which represents the highest source of solar resource 

uncertainty. Modelled data have measurement uncertainties ranging from 8%–15% while 

on-site measurement have uncertainty range between 2% and 7% (Schnitzer et al., 2012; 

Vignola et al., 2013; Myers, 2009; Remund and Mueller, 2012). 

On-site data have lower measurement uncertainty since they depend mainly on the 

quality and the frequency of on-site maintenance, while for modelled data, the uncertainty 

stems from the limitations of the computer-intensive radiative transfer models particularly 

during cloudy or partially cloudy periods (Schnitzer et al., 2012; Vignola et al., 2013). 

Based on Myers (2009), the NASA SSE data has a measurement uncertainty of ±15% 

in global horizontal irradiation and ±20% in direct beam data. As mentioned earlier, the 

uncertainty for ground measurements is influenced by the quality and calibration of the 

pyranometer as well as the frequency of the field maintenance. The application of best 

practices in on-site measurement would help in reducing uncertainty in the measurements. 

Following Vignola et al. (2013) and Thuman et al. (2012), the measurement uncertainty for 

the validated GHI data used in this study is ±5%. 
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Table 10.1: Solar Resource Uncertainty 

Uncertainty NASA SSE Correlated Data 

Spatial variability* 0.50 0.50 

Representativeness of monitoring period* 1.25 1.25 

Inter-annual variability* 3.50 3.50 

Measurement uncertainty** 15.00 5.00 

TOTAL 15.46 6.25 

 
NASA SSE = National Aeronautics and Space Administration Surface Meteorology and Solar Energy. 
Notes: * Taken as mean value from Schnitzer et al. (2012).  
Sources: Myers (2009) for NASA SSE data and Vignola et al. (2012). 

 
 

To determine the impact of using a highly accurate data set, only the measurement 

uncertainties were changed in the two cases analysed in this study. The average values of 

the three other sources of uncertainties were used in the analysis and that these values 

were unchanged in both cases. The solar resource uncertainty for each case is taken as the 

sum of individual uncertainty components. The total estimated solar resource uncertainty 

for satellite-based irradiation data is 15.5% while that of correlated data is 6.3% (Table 10.1). 

To calculate the total uncertainty, all single uncertainties were considered to be 

stochastically independent. The approach to estimate the joint uncertainty of independent 

(un-correlated) uncertainties is to calculate the root-mean-square value. Single 

uncertainties of the energy level are merged by the root-mean-square function (Abel et al., 

2000). 

 

2.4. Estimating energy production 

2.4.1. Energy production modelling tools 

The energy production of the 27 MWp TSB solar PV expansion plant was estimated 

for both two cases discussed above using a solar PV production modelling tool. Based on 

the review and assessment by Yates and Hibberd (2010), Cameron et al. (2008) and Klise 

and Stein (2009), solar PV production modelling tools available in the market could be 

broadly characterised to comprise two main algorithms: the first determines the amount 

of sunlight that falls on the array, and the second estimates the amount of electricity that 

could be produced with that given sunlight. 

The first algorithm consist of modules that contain site-specific meteorological data, 

translate the radiation into inclined surfaces (radiation models), take into account the 

shading effect of distant objects, obstructions, and the system itself, and factor in the 
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decrease of the amount of sunlight due to soiling. The second algorithm includes modules 

that predict the power output of different PV technologies (PV performance models), 

discount the losses in direct current (DC) production and in the conversion of DC power 

into alternating current (AC), and take into account the performance of inverters. Solar PV 

production software packages used by industry stakeholders vary in model system 

complexity. Some models have simplified assumptions related to system components and 

ratings while complex models consider manufacturer parameters, derived parameters, and 

empirically derived data (Klise and Stein, 2009; Yates and Hibberd, 2010; Cameron et al., 

2008). 

Yates and Hibberd (2010), in their comparative performance assessment of the 

main models currently used by researchers, integrators, and project developers in North 

America, conclude that the radiation model components of the evaluated tools perform 

consistently and predicting similar plane-of-array irradiance from the same weather data. 

In terms of overall energy production, the difference between the estimates of the most 

aggressive and the most conservative modelling tool is 9%. The software packages 

evaluated were PV Watts, Solar Advisor Model, PV-Design Pro, PV*SOL, and PVsyst. 

The study used the PVsyst software in simulating the energy production of the two 

cases of data sets. The software is one of the most powerful and accurate tools in PV or 

solar cell production. The model allows a very detailed definition of the PV plant, including 

special geometries, as near shading objects or tracking systems and permits monthly 

variations of soiling, which accurately reflect real world conditions (Yates and Hibberd, 

2010; www.pvsyst.com). The software package also contains a huge database of technical 

and electrical properties of the most common PV components (modules and inverters) 

available in the market. 

In estimating the solar PV power plant energy production, the study used a typical 

polycrystalline solar PV modules and inverter models available in the market. Key model 

input parameters are shown in Table A1 of the appendix. In the model, DC electricity is 

generated from PV modules and converted into AC electricity through central inverters. 

In the simulation process, PV arrays are fixed to face south and inclined at 5°, which 

corresponds to the project location’s latitude (NREL, 1990). Several methodologies exist in 

translating the horizontal radiation into plane-of-array irradiance. Among these models, the 

Perez et al. (1990) model was considered to be the most complex and most accurate 
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(Cameron et al., 2008; Yates and Hibberd, 2010; McMahan et al., 2013). The PVsyst model 

employs the methodology of Perez et al. in its solar irradiation module. 

The PVsyst simulation model endogenously estimates the technical losses of the 

system based on the technical parameters specified in the case study. In addition to this, 

the study exogenously estimated the loss in production due to PV module degradation and 

plant availability. Annual degradation of 1% was used in the study following IRENA (2012) 

and DBRS (2014) and an average of 98% availability based mainly on average inverter 

manufacturers’ guarantees. 

 

2.4.2. Uncertainty in energy production 

Electricity production estimate using satellite-derived irradiation data set has higher 

uncertainty than that of using ground-correlated data set. As discussed in the previous 

section, this is due to higher solar data uncertainty of the former compared with the latter. 

In addition to solar resource uncertainty, there exist other sources of uncertainty in the 

calculation of energy production, and these include the following (with the uncertainty 

value range shown in the parenthesis): (i) energy simulation and plant losses (3%–5%), (ii) 

transposition to plane of array (0.5%–2%), and (iii) annual degradation (0.5%–1%) 

(Schnitzer et al., 2012). 

 

Table 10.2: Solar PV Energy Production Uncertainty 

Uncertainty NASA SSE Correlated Data 

Annual degradation* 0.75 0.75 

Transposition to plane of array* 1.25 1.25 

Energy simulation, plant losses* 4.00 4.00 

Solar resource uncertainty** 15.46 6.25 

TOTAL 16.04 7.56 

NASA SSE = National Aeronautics and Space Administration Surface Meteorology and Solar Energy; PV = 
photovoltaic. 
Notes: * Taken as mean value from Schnitzer et al. (2012). 
Sources: ** Derived from Table 10.1. 

 

In estimating the total energy production uncertainty, the study used the mean 

values of each of the above uncertainties. Also, since the focus of the study is on solar 

resource uncertainty (specifically measurement uncertainty), the same uncertainty values 

were used for both production estimates using satellite- and ground-correlated data sets. 

These were combined with the solar resource uncertainty estimated earlier for both sets 
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of irradiation data. The total uncertainty of the electricity production using satellite-derived 

solar irradiation data set is 16% while that of ground- correlated data set is 7.6% (Table 

10.2). 

 

2.5. Debt structuring 

2.5.1. Project risks and probability of exceedance 

The uncertainty in energy production estimates translates to energy risk for the 27 

MWp TSB expansion project. There is the risk that the expected production, hence project 

revenues, will not be achieved in actual condition. Project financial stakeholders rely on the 

probability of exceedance analysis to characterise and quantify risks related to energy 

production and, ultimately, revenues of solar PV projects (McMahan et al., 2013; Dobos et 

al., 2012). The exceedance probability is the likelihood of attaining or exceeding an energy 

production value. 

Project lenders and credit rating agencies often require project developers to 

estimate the P50, P90, and even P99 of annual electricity generation of a given project. If a 

P50 annual generation value of a solar power plant is 10 megawatt-hours (MWh), this 

means that there is a 50% likelihood that the generation would be greater than 10 MWh. 

Similarly, a P90 value of 10 MWh would mean that the power plant would generate more 

than 10 MWh 90% of the time. 

In estimating the probability of exceedance, the uncertainties related to solar 

resource measurement and other uncertainties related to energy production (uncertainties 

described in previous sections) characterise the source of statistical variations. Following 

Dobos et al. (2012) and McMahan et al. (2013), the normal distribution (Gaussian 

distribution) and the cumulative distribution function were constructed based on the mean 

annual yield and standard deviation (uncertainty values). The P90 or P99 values were 

calculated from the distribution’s cumulative distribution function.38 

                                                   
38 Following function (Dobos et al., 2012), cumulative distribution function is defined by    the following 

function: 

Φ(
𝑥−𝜇

𝜎
) =  

1

2
[1 + erf (

𝑥−𝜇

𝜎

1

√2
)] 

The value of P90 occurs when Φ((
𝑥−𝜇

𝜎
)) = 0.1 . Setting 𝛾 = (

𝑥−𝜇

𝜎
) , the following equation can be solved 

numerically. 

Φ(𝛾) = 0.1 → 𝛾 = 1.282 =
𝑥−𝜇

𝜎
 

Rearranging, this gives an expression for P90 value given the mean (𝜇) and standard deviation (𝜎) of the data 

set that is assumed to fit a normal distribution. 

𝑥 = 𝜇 − 1.282 
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2.5.2. Debt sizing 

Lenders, particularly those involved in project finance or non-recourse financing, 

are conservative and would only provide an amount of debt that they are confident can be 

repaid from revenues generated by the project. To determine if borrowers can fulfil their 

financial obligations, banks rely on the DSCR measure (McMahan et al., 2013; Cleijne and 

Ruijgrok, 2004). DSCR is defined as the ratio of project cash flow (after all operating 

expenses are paid) to debt repayment during a given period. If the DSCR value is around 1, 

this means that the borrower would be able to meet its financial obligations. Banks, 

however, could require a higher DSCR if their perception of the project risk is high. 

Credit rating agencies also employ similar risk analysis method to major debt 

lenders to characterise credit risk (McMahan et al., 2013; Schnitzer et al., 2012). Fitch 

ratings and DBRS, for example, require a DSCR of 1.3x for P90 performance level and 1.2x 

for P99 (DBRS, 2014; Joassin, 2012). In sizing project debt, the DSCR targets specified by 

credit ratings were adopted in the study. 

To estimate the project DSCR, the study established a simple cash flow model for 

each of the case studies. The financial parameters used in the analysis are shown in the 

Table A2 of the Appendix. 

 

2.5.3. Levelised cost of electricity 

One of the indicators used in the comparative analysis is the levelised cost of 

electricity (LCOE). LCOE is defined as the net present value of the unit cost of electricity 

over the lifetime of a generating asset. The levelised cost is that value for which an equal-

valued fixed revenue delivered over the life of the asset's generating profile would cause 

the project to break even. This can be roughly calculated as the net present value of all 

costs over the lifetime of the asset divided by the total electricity output of the asset 

(IEA/NEA, 2010; Short et al., 1995).39 The weighted average cost of capital (WACC)40 is 

                                                   
39Following IEA/NEA (2010), LCOE was estimated using the following equation: 

𝐿𝐶𝑂𝐸 =
∑

𝐶𝑛

(1+𝑑)𝑛
𝑁
𝑛=0

∑
𝑄𝑛

(1+𝑑)𝑛
𝑁
𝑛=1

 

Where: Cn stands for total costs, in the year n; Qn stands for energy generation, in the year n; n stands for year; 
N stands for the project life; and d stands for the discount rate. 

 
40WACC was calculated using the following relationship: 
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used as the discount rate in estimating the LCOE. 

 

 

3. Results and discussions 

3.1. Energy production 

The two data sets described in Section 2.2 were used in the energy production 

analysis. Energy production from solar PV power plant is a function of solar irradiation. As 

expected, the NASA SSE data result had a higher energy production compared with that 

from ground-correlated data set. Given the same power plant configuration, the energy 

yield on the first year from the case with satellite data is 3.5 % higher than that using the 

ground-validated data set. 

Associated with this higher energy yield are better performance indicators. As 

shown in Table 10.3, the case of NASA SSE has higher yield factor and performance ratios, 

for both first year of operation and for the 20-year average, compared with the correlated 

data set case. For both cases, the performance indicators for the 20-year average are lower 

since an annual module production degradation of 1% was considered in the analysis. 

Table 10.3: Comparative Performance Results of the 27 MWp Solar PV Project 

Output Unit NASA SSE Data Correlated Data 

Peak power kWp 27,000 27,000 

Irradiation on horizontal plane kWh/m2 1,911 1,859 

Irradiation on inclined plane kWh/m2 1,918 1,864 

Plant availability % 98 98 

First Year Performance 

Energy yield (after inverter) kWh/year 41,928 40,457 

Overall yield factor kWh/kWp/year 1,553 1,498 

Overall performance ratio % 81.0 80.4 

Average Performance (20 years) 

Energy yield per year (average for 20 
years) 

kWh/year 38,174 36,835 

Total yield for 20 years kWh 763,483 736,700 

Overall yield factor kWh/kWp/year 1,414 1,364 

Overall performance ratio % 73.7 73.2 

kWh = kilowatt-hour; kWp = kilowatt peak; m2 = square meter; NASA SSE = National Aeronautics and Space 
Administration Surface Meteorology and Solar Energy. 
Note: Yield factor (YF) refers to the plant’s specific performance in net kWh delivered to the grid per kW of 
installed nominal PV module power. This is also equivalent to the number of full load hours for the plant. 
Performance ratio (PR) is defined as the actual amount of PV energy delivered to the grid in a given period, 

                                                   

𝑊𝐴𝐶𝐶 = [
𝐸

𝐷 + 𝐸
] × 𝑅𝑒 + [

𝐷

𝐷 + 𝐸
] × (1 − 𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒 𝑡𝑎𝑥) × 𝑅𝑑 

Where: E = equity share; D = debt share; Re = return on equity (after tax); and Rd = debt interest 
rate. 
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divided by the theoretical amount according to standard test conditions (STC) data of the modules. 
Source: Prepared by the author. 
 

3.2. Uncertainty and project risks 

While performance results from the simulation study using NASA SSE data set 

appear attractive and optimistic, bankers are cautious with these results since the key 

parameters in estimating the energy yield are fraught with higher uncertainty values. The 

overall energy production uncertainty for NASA SSE was estimated in the previous section 

to be 16.04% while that of ground-validated data was only 7.56%. These uncertainties are 

translated into project operational risks. 

The probability of exceedance estimates the energy production values in relation to 

the given uncertainties. As shown in Figure 10.2, the probability distribution function of the 

case using ground-correlated data is slimmer compared with the case using NASA SSE data. 

This is mainly due to its lower value of statistical variation. 

The energy production results presented in the previous section represent the 

expected value (the mean) or the P50 value. As shown in Figure 10.2, the NASA SSE case 

has higher P50 value than that of correlated data case. The situation appears to reverse 

when calculating energy production at higher confidence levels that are required by lenders. 

The ground-correlated case has higher production values for P90 and P99 than the satellite 

data case. For P90 and P99 values, the energy production with correlated data is 10% and 

27% higher than those with NASA SSE data sets. 

 

Figure 10.2: Probability of Exceedance 

  
(A) NASA SSE Data (B) Correlated Data 

 
NASA SSE = National Aeronautics and Space Administration Surface Meteorology and Solar Energy. 
Source: Prepared by the author. 
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3.3. Impacts on debt financing 

The study quantified the implications of the higher confidence values of energy 

production to debt financing. The project financial parameters, as mentioned earlier, are 

shown in Table A2 of the Appendix. 

Taking reference from the criteria (target DSCR) used by banks and credit agencies, 

the DSCRs were estimated using the P90 and P99 energy production values. With constant 

capital structure of 70% debt and 30% equity, the P90 production value from satellite data 

results in a DSCR of 1.28x while that of correlated data resulted in a DSCR of 1.41x. The 

former is slightly below the 1.3x target by most financial institutions while the latter is 

comfortably higher than the target value. This is shown in (A) in Figure 10.3. 

The study also analysed the effect on debt share to keeping the target of 1.3x DSCR 

constant (B in Figure 10.3). For the satellite data case, the debt share needs to be slightly 

reduced to meet the target DSCR. On the other hand, for the correlated data case, the debt 

share could be further improved from the reference share of 70% to 76%. 

Improving (reducing) the share of debt also improves (degrades) the project’s net 

present value (NPV), the equity NPV, and levelised cost of electricity. This can be seen by 

comparing the financial indicators shown in (A) and (B) in Figure 10.3. For the correlated 

data case, these improvements are attributed to the reduction of the WACC, which is used 

as the discount rate in the analysis. Similarly, the slight decline in the financial indicators for 

satellite data case is due to the reduction of debt share and to the corresponding increase 

of the WACC. 

Figure 10.3: P90 Values, Target DSCR, and Debt Capacity Improvement 
(A) 

Constant capital structure: debt=70%, equity=30% 
(B) 

Constant DSCR: 1.3x 

  
SATELLITE DATA 

Project NPV = $7,650 
Equity NPV = $657 
Levelised cost =  
$0.2052/kWh 

CORRELATED DATA 
Project NPV = $13,561 
Equity NPV = 4,773 
Levelised cost =  
$0.1870/kWh 

SATELLITE DATA 
Project NPV = $7,418 
Equity NPV = $557 
Levelised cost =  
$0.2059/kWh 

CORRELATED DATA 
Project NPV = $15,157 
Equity NPV = 5,371 
Levelised cost = 
$0.1829/kWh 

DSCR = debt-service coverage ratio; kWh = kilowatt-hour; NPV = net present value. 
Source: Prepared by the author.      
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A similar stress test was carried out for P99 values with a target DSCR of 1.2x. The 

results indicate that the project case with satellite data fails to achieve the target DSCR. In 

addition, the calculation also shows that the project is not financially viable with key 

indicators showing negative project NPV and equity NPV. On the other hand, the DSCR value 

for the project case with correlated data is comfortably above the target limit while its 

financial indicators are positive. This is shown in (A) of Figure 10.4. 

 

Figure 10.4: P99 Values, Target DSCR, and Debt Capacity Improvement 

 (A) 
Constant capital structure: debt=70%, equity=30% 

(B) 
Constant DSCR: 1.2x 

  
SATELLITE DATA 

NPV = ($5,219) 
Equity NPV = ($8,308) 
Levelised cost =  
$0.2600/kWh 

CORRELATED DATA 
NPV = $7,705 
Equity NPV = $695 
Levelised cost =  
$0.2050/kWh 

SATELLITE DATA 
NPV = ($7,187) 
Equity NPV = ($9,504) 
Levelised cost =  
$0.2717/kWh 

CORRELATED DATA 
NPV = $8,890 
Equity NPV = $1,193 
Levelised cost =  
$0.2012/kWh 

DSCR = debt-service coverage ratio; kWh = kilowatt-hour; NPV = net present value. 
Source: Prepared by the author. 

 

With DSCR value fixed at 1.2x, the debt share of the project using satellite data 

needs to be reduced to 58% (from a reference share of 70%) in order to achieve the target. 

In contrast, the project utilising the correlated data could be further increased to 75% as 

shown in (B) of Figure 10.4. The satellite data case results in higher WACC while the 

correlated data case generates a lower WACC value. This explains the slight increase and 

decrease of the levelised cost of energy for the project case with satellite data and the 

project case with correlated data. This can be observed by comparing (A) and (B) of Figure 

10.4. 

 

 

4. Conclusion and policy implications 

The study has carried out a comparative analysis between a project using satellite-

derived irradiation data (NASA SSE) and that using a bankable correlated data set, and their 
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implications related to debt financing. The study results can be summarised as follows: 

 Solar resource uncertainty of bankable correlated data set is relatively low and 

represents around 40% of NASA SSE data set uncertainty. 

 The project using NASA SSE data set tends to overestimate energy production at P50 

confidence level. On the other hand, energy production at higher confidence levels (P90 

and P99) for the project using correlated data set is higher than those using satellite 

data. 

 At constant capital structure, the project with satellite data set has DSCRs below the 

stress test targets of 1.3x for P90 and 1.2x for P99 production values. Conversely, the 

project using correlated data set has DSCR values higher than the reference DSCRs. 

 To achieve the target minimum DSCR values, the debt share of the project that use 

correlated data set could be further increased by around 7% for both productions at 

confidence levels of P90 and P99. This results in a lower WACC, higher project NPV, and 

lower LCOE.  

 The converse could be observed in the project using NASA SSE data set. At P90 

confidence level, the debt share needs to be reduced by more than 1% while for P99, 

the share should be lowered down by 17%. In both production confidence levels, NPV 

values are negative, and the WACC as well as the LCOE are high. 

 

The study shows that with a bankable solar data set, the overall project risks are 

reduced, project leverage is increased, and financial competitiveness of the solar PV project 

is enhanced. The availability of bankable solar irradiation data set reduces financial risks 

and eventually contributes to the rapid deployment of renewable energy technologies with 

overall benefits accruing to the society in general. 

Governments of developing countries, in addition to introducing policy and 

regulatory frameworks (such as feed-in tariff, net metering, renewable portfolio standards, 

and tradable energy certificates) that promote and address economic barriers to renewable 

energy deployment, must also introduce support mechanisms that address the lack of 

bankable data and resource information. This could take in the form of (i) incentives or 

technical support to private sector activities related to resource measurements, or (ii) direct 

intervention by undertaking renewable energy resource measurements and making the 

information available to all project stakeholders. 

Agencies responsible for renewable energy development could also support 

financing institutions in the form of awareness-raising activities and capacity building 

related to resource measurements, type of resource data used in project analysis, and risk 
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analysis to increase their knowledge and understanding of the specific characteristics of 

renewable energy projects. 
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Appendix 

Table A1: Solar PV Power Plant Technical Parameters 

Module Orientation 

Module inclination 5° 

Azimuth 0° 

Module-Inverter Configuration 

Installed module capacity 27,000 kWp 

Module type Polycrystalline silicon 

Number of modules 10,800 

Nominal capacity of modules 250 Wp 

Number of modules per string 18 

Number of strings in parallel 6000 

Inverter capacity 500 kW AC 

Number of inverters 49 

Installed inverter capacity 24,500 kW AC 

kWp = kilowatt peak; AC = alternating current.  
Source: Prepared by the author.  
 

Table A2: Cost and Financial Parameters 

Cost Parameters 
Capital cost: US$2 million/MW 
Operating cost: 1% of capital cost 

Fiscal Parameters 
Corporate tax rate: 18% 
Income tax holiday: 10 years 
Depreciation period: 20 years 

Financing Parameters 
Debt share: 70% 
Interest rate: 8% 
Grace period: 2 years 
Loan term including grace period: 15 years 
Return on equity: 12% 

Others 
Project useful life: 20 years 
Construction period: 1.5 years 
Feed-in tariff: $0.23 per kWh 

kWh = kilowatt-hour; MW = megawatt. 
Source: Prepared by the author. 
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