CONTENTS

List of Figures	vi
List of Tables	ix
Foreword	x
Acknowledgements	xi
List of Project Members	xii
List of Abbreviations and Acronyms	xiv
Executive Summary	xvi

Chapter 1	Introduction	1
Chapter 2	Electric Power Supply in EAS Countries	5
Chapter 3	Optimising Power Infrastructure Development	27
Chapter 4	Preliminary Assessment of Possible Interconnection	51
Chapter 5	Key Findings and Next Step	63

Appendix 1 Power Generation Mix in Each Case (2035)	71
Appendix 2 Power Trade in Each Case (2025, 2030, 2035)	73
Appendix 3 Cumulative Cost Up to 2035 (differences compared to Case 0) 79

LIST OF FIGURES

Figure 1.1	Study flow	4
Figure 2.1	Projected electric power demand (TWh)	6
Figure 2.2	Breakdown of existing power generation capacity as of	8
	2012 (MW)	
Figure 2.3	Potential of the various energy resources in the countries	11
	of ASEAN	
Figure 2.4	Projected hydropower development potential in 2035	12
	(TWh)	
Figure 2.5	Daily load curve (average for 2006) and load duration	13
	curve for BRN	
Figure 2.6	Daily load curve (dry season, 2013) and load duration	14
	curve for IDN	
Figure 2.7	Daily load curve (average for 2007) and load duration	14
	curve for KHM	
Figure 2.8	Daily load curve (dry season, 2012) and load duration	14
	curve for LAO	
Figure 2.9	Daily load curve (rainy season, 2007) and load duration	15
	curve for MYA	
Figure 2.10	Daily load curve (June 2012) and load duration curve for	15
	MYS	
Figure 2.11	Daily load curve (July 2013) and load duration curve for	15
	NEI	
Figure 2.12	Daily load curve (September 2011) and load duration	16
	curve for PHL	

Figure 2.13	Daily load curve (May 2010) and load duration curve for	16
	SPG	
Figure 2.14	Daily load curve (April 2012) and load duration curve for	16
	THA	
Figure 2.15	Daily load curve (August 2011) and load duration curve	17
	for VNM	
Figure 2.16	Projected future construction costs (by energy source)	18
Figure 2.17	Projected future variable O&M costs (by energy source)	19
Figure 2.18	Projected thermal efficiency (by energy source)	19
Figure 2.19	Projected future coal prices (Steam coal)	20
Figure 2.20	Projected future natural gas prices	21
Figure 2.21	ASEAN Power Grid (APG)	23
Figure 2.22	Greater Mekong Sub-region (GMS)	24
Figure 3.1	Preconditions and outputs of the optimal power	27
	generation planning model	
Figure 3.2	Power source choices in the optimal calculations	28
Figure 3.3	Supply reliability evaluation model	31
Figure 3.4	Comparison between the calculation results for each	33
	country's power generation mix and the ERIA Outlook	
Figure 3.5	Required reserve margin to gain the same LOLE	36
Figure 3.6	Power supply mix in 2035 (Case 0)	36
Figure 3.7	Power supply mix in 2035 (Case 1)	37
Figure 3.8	Power supply mix in 2035 (Case 2a)	38
Figure 3.9	Power supply mix in 2035 (Case 2b)	39
Figure 3.10	Power supply mix in 2035 (Case 3)	39
Figure 3.11	Power supply mix in 2035 (total of all regions)	40
Figure 3.12	CO ₂ emissions in 2035	41
Figure 3.13	Power trade flows in 2035 (Case 1)	42

Figure 3.14	Power trade flows in 2035 (Case 2a)	43
Figure 3.15	Power trade flows in 2035 (Case 2b)	44
Figure 3.16	Power trade flows in 2035 (Case 3)	45
Figure 3.17	Changes in power trade in Case 2b (1)	46
Figure 3.18	Changes in power trade in Case 2b (2)	47
Figure 3.19	Changes in power trade in Case 2b (3)	47
Figure 3.20	Changes in power trade in Case 2b (4)	48
Figure 3.21	Cumulative costs in each case	49
Figure 4.1	How routes are considered in each case	52
Figure 4.2	Actual transmission line construction costs in	55
	neighbouring countries (500kV overhead lines)	
Figure 4.3	Actual transmission line construction costs in	55
	neighbouring countries (500kV undersea cable)	

LIST OF TABLES

Table 2.1	List of country names and abbreviations	5
Table 2.2	Projected international interconnection transmission	22
	capacity in 2020 and later (GW)	
Table 4.1	Route length calculation results (Route 1)	53
Table 4.2	Route length calculation results (Route 2)	53
Table 4.3	Transmission line construction costs (Route 1)	59
Table 4.4	Transmission line construction costs (Route 2)	60
Table 4.5	Estimated cost benefit of new transmission line	61
Table 5.1	Possible interconnection and cumulative cost benefit	64
Table 5.2	Cost benefit and equivalent investment	65
Table 5.3	Possible interconnection line and their priority	66
Table 5.4	HAPUA lead plan	67