ERIA Discussion Paper Series

Evolution of Machinery Production Networks: Linkage of North America with East Asia^{*}

Mitsuyo ANDO

Keio University

Fukunari KIMURA

Economic Research Institute for ASEAN and East Asia (ERIA) Professor, Faculty of Economics, Keio University November 2013

Abstract: This paper investigates the developing pattern of machinery trade and the extent and depth of production networks in North America from the perspective of their links with East Asia in the last two decades. Our descriptive analysis based on the total value of trade and the extensive margin demonstrates the expanding fragmentation of production in North America with a strong connection of Mexico, in addition to the US, with East Asia, particularly in the electric machinery sector. Our quantitative analysis on the total value of trade as well as extensive and intensive margins verifies the existence of such a strong connection with East Asia for machinery imports by North America, where Mexico enhanced a bridging role between East Asia and the US. These results reflect the reduction in services link costs, the further evolution of production sharing in the US-Mexico nexus, and the strengthening competitiveness for production networks in East Asia.

Keywords: the 2nd unbundling, fragmentation, agglomeration, free trade agreement (FTA), extensive margin

JEL classification: F14, F15, F23, and L23

1. Introduction

As a new pattern of international division of labor in terms of production processes and tasks, or so-called the 2nd unbundling (Baldwin (2011)), has been increasingly evident in the North-South and South-South trade, the evolving pattern of international production networks in the world has become an issue of great interest in both academic and non-academic literature.

The nature of transactions in international production networks or the 2nd unbundling seems to set their geographical boundaries. Unlike transactions in the traditional industry-wise international division of labor or the 1st unbundling, new types of transactions have to connect well coordinated production blocks and thus tend to be of high frequency, with high speed, and tightly synchronized. Such transactions are supposed to be sensitive to geographical distance as well as the quality of logistics links. The word "global value chains" has become popular, and a large literature on them seems to be built up quickly.¹ However, we must note that such value chains include not only the international division of labor in the realm of the 1st unbundling. The same caution would apply to a growing literature of value added trade in which the nature of the 2nd unbundling is not always taken care of in an explicit manner.² In the context of value added trade, the finding of Johnson and Noguera (2012b) on the importance of geographical proximity for production fragmentation seems to be important.

Machinery industries including general machinery, electric machinery, transport equipment, and precision machinery have continuously been forerunners in the formation of international production networks, and we have observed three notable centers of such networks in the world: East Asia including both Northeast Asia and Southeast Asia, North America, and Europe. Ando and Kimura (2013) examine the relationship of machinery production networks between East Asia and Europe, particularly focusing on the role of Central and Eastern Europe (CEE) to connect East Asia with Western Europe (WE). The study finds that in the electric machinery, East Asia starts supplying massive electronics parts and components to CEE in order to make assembly possible to serve for the WE market. This means that a part of international production networks has developed from regional to global. On the other hand, in the automobile industry, East Asia and CEE independently start forming regional industrial agglomerations. Differences in the industry characteristics clearly affect the evolving geographical pattern of international production networks.

What happens in the relationship between East Asia and North America? One common element to the East Asia–Europe relationship is the increasing dominance of East Asia as an industrial base. In East Asia, the sophistication of production fragmentation has come into a stage of forming industrial agglomerations in newly developed economies and less developed countries (LDCs), which has been led by short-distance inter-firm (arm's length) transactions. In addition, in the past decade, mild deterioration of the terms of trade due to resource price hikes vis-à-vis prices of manufactured goods pushed up the international competitiveness of East Asia for

manufacturing activities. Relatively smooth labor movements from informal/rural/non-manufacturing sectors to formal/urban/manufacturing sectors helped experience relatively slow increases in labor costs compared with the rest of the developing world. The rise of China as an industrial center has been evident, but other East Asian developing countries have also presented deeper involvement in regional production networks.

Different aspects of the East Asia-North America relationship vis-à-vis East Asia-Europe include the existence of long-lasting tight links between East Asia and North America. North America has been a major external market for East Asia for several decades. Furthermore, since the 1980s, there have been active transactions of parts and components across the Pacific. Production network links between East Asia and the US are just like a turnpike overcoming geographical distance, which makes the links as tight as those extending within East Asia. The US companies have also been one of the major players for developing production networks in East Asia through trade and foreign direct In addition, Mexico has occupied a special position in the investment (FDI). trans-Pacific production networks. Mexico has worked as a site for cross-border production sharing with the US while imports of parts and components from East Asia have become considerably large, particularly in the Maquiladora operation. The formation of industrial agglomeration in Mexico, particularly in the automobile industry, is also notable in the past ten years. These may make the development of Trans-Pacific production networks between East Asia and North America somewhat different from East Asia-Europe.

The rest of the paper is organized as follows: the next section briefly discusses the underlying conceptual framework in terms of fragmentation and agglomeration to understand evolving patterns of machinery trade in North America with a link to East Asia. Section 3 then descriptively examines the developing patterns of machinery trade for North America from 1991 to 2011 from the perspective of the extent and depth of production networks in North America in connection with East Asia, based on the total value of trade and the extensive margin. Section 4 attempts to quantitatively verify the existence of such a strong connection with East Asia for machinery imports in North America and the evolution of production networks in that region, using gravity model estimations, and Section 5 concludes the paper.

2. Geographical Extension of International Production Networks

Machines are typically made of a large number of parts and components that are produced with using various materials and employing diversified technologies, often in remotely located production sites. Intermediate inventory storage in a machinery factory is filled with hundreds of kinds of parts and components coming from various places with different frequency and diversified transport modes of delivery. A procurement manager carefully designs and operates upstream networks, and a sale manager closely watches and controls product inventories and downstream networks. Transactions of parts and components as well as finished products in production networks can be classified into four layers in terms of the distance as in Table 1: Layer 1 (local), Layer 2 (sub-regional), Layer 3 (regional), and Layer 4 (global).³ Layer 1 refers to transactions within industrial agglomerations, such as auto parts procurements in Bangkok Metropolitan Area or the Pearl River Delta, where a just-in-time system in the real sense can be operated with extremely squeezed intermediate inventories. Layer 2 mainly consists of transactions between neighboring industrial agglomerations, such as transactions within ASEAN or within CEE, which are still sensitive to the timeliness of deliveries in order to keep the whole production system operating. Layer 3 covers transactions extended in a whole region such as East Asia or Europe where the timeliness of deliveries in general becomes less crucial except emergency. Layer 4 denotes trans-continental transactions, which is typically conducted with ample time like two weeks to two months by ship; this is rather the 1^{st} unbundling rather than the 2^{nd} unbundling. Vertical upstream-downstream production networks operated by a factory consist of deliberately designed combination of these four-layer transactions, which differs by industries, products, business models, and local conditions including both location advantages for production and service link costs.

Layer 1	Layer 2	Layer 3	Layer 4
(within industrial agglomeration)	(within sub-region)	(within region)	(global)
Less than 2.5 hours	One to seven days	One to two weeks	Two weeks to two months
Once per day or more	Once per week or more	Once a week	Once a week or less
Trucks	Trucks/ships/airplanes	Ships/airplanes	Ships/airplanes
Less than 100km	100-1,500km	1,500-6,000km	More than 6,000km
	Layer 1 (within industrial agglomeration) Less than 2.5 hours Once per day or more Trucks Less than 100km	Layer 1Layer 2(within industrial agglomeration)(within sub-region)Less than 2.5 hoursOne to seven daysOnce per day or moreOnce per week or moreTrucksTrucks/ships/airplanesLess than 100km100-1,500km	Layer 1Layer 2Layer 3(within industrial agglomeration)(within sub-region)(within region)Less than 2.5 hoursOne to seven daysOne to two weeksOnce per day or moreOnce per week or moreOnce a weekTrucksTrucks/ships/airplanesShips/airplanesLess than 100km100-1,500km1,500-6,000km

Table 1: Four Layers of Transactions in Production Networks: Illustration

Source: Kimura (2010). Slightly modified.

Kimura and Ando (2005) propose the extension of the concept of production fragmentation to two dimensions: fragmentation in the dimension of geographical distance and fragmentation in the dimension of disintegration (intra-firm or arm's length (inter-firm)). In order to be economically viable, fragmentation in the geographical dimension requires reduction in three types of costs: (i) network set-up costs, (ii) service link costs such as transport costs in a wider sense, and (iii) production costs per se coming from location advantages such as low wages and economies of scale. Fragmentation in the disintegration dimension depends on the intimacy in the inter-firm relationship and the architecture of firm-to-firm interface. Intra-firm vs. arm's length, the strength of trust and power balance between business partners, and modular vs. total integration are coming in. Using this framework, we can list up possible determinants of layer choices of transactions as Table 2. Arrows on the right-hand side show a rough idea of the range of layer choice affected by each element of listed determinants.

Table 2: Determinants of The Layer Choice

Source: Kimura (2010).

Table 2 is useful, for example, in interpreting differences between electronics industry and automobile industry in the geographical extension of production networks.⁴ Production networks in electronics industry tend to be "sub-regional" or "regional." This is because (i) transport costs for electronic parts and components are usually low vis-à-vis the weight and the volume, (ii) economies of scale at the plant level tend to be large, (iii) trust between upstream and downstream firms is strong, particularly in cases of transactions between multinational enterprises (MNEs), (iv) power balance between upstream and downstream firms is close to being balanced, and (v) the architecture of

inter-firm interface is likely to be modular. Trans-continental transactions of final products are typically slow by maritime transportation.⁵

On the other hand, production networks in the automobile industry are mostly within industrial agglomeration, i.e., "local," while some limited supplementary supplies of parts and components are "sub-regional" or "regional." This is because (i) transport costs for a large portion of the parts and components such as air ducts for air conditioners are high and thus sensitive to geographical distance, and other types of a sort of transport costs including trade barriers, non-tariff measures such as safety standards, and even local tastes make service link costs high and local production advantageous, (ii) trust between upstream and downstream firms is sometimes weak, particularly when upstream firms are small/medium enterprises or local firms, (iii) assemblers are typically much stronger than parts producers, and thus power balance is unbalanced, and (iv) the architecture of inter-firm interface is likely to be total integration.

Although these are the description of typical production networks in electronics and automobile industries, vast variations exist in the geographical pattern, depending on individual firms' strategies, location advantages, and evolution over time. For example, a local vendor network is sometimes important even in the case of electronics industry.⁶ In the other extreme, semiconductors such as RAMs and system LSI are at high prices per weight and volume so that they can be transported by air, possibly traveling very long distance. Ando and Kimura (2013) finds that massive electronic parts and components began to be exported from East Asia to CEE in the past ten years; i.e., some transactions even become "global." Even final products of electronics such as Dell computers can

sometimes move by air, when a client is in a hurry. In the case of automobile industry, most of the transactions are local and sub-regional in cases of East Asia though some regional transactions are required in the process of forming a critical mass of industrial agglomeration. In addition, modular or total integration reflects each company's strategies. Toyota conducts a sort of extreme total integration while Volkswagen applies a more modular approach with a limited number of car models and commonized parts and components across production sites all over the world. This difference may explain, at least partially, why tight industrial agglomeration is formed in East Asia while sub-regional transactions are large among CEE countries.

North America is a vast area, but the highway system in the US and the Southern part of Canada is superb. Therefore, considerably large areas in the US and neighboring areas can be covered as the 2^{nd} layer transactions though the monetary cost of transportation may not be so cheap. San Diego in the US and Tijuana in Mexico are only within 15-minute drive, and thus the Southern part of California and Tijuana may work with Layer 1 transactions, particularly for electric and electronic industry. The US and inland Mexico would be covered by Layer 3 transactions. Klier *et al.* (2004; particularly Map 1) present the geographical distribution of auto supplier plants over the areas starting from Detroit, coming down to the South, and then going into the inland Mexico. East Asia and North America are supposed to be connected mainly with Layer 4 transactions though some limited air connection may almost work as Layer 3 transactions.

3. Evolution of Machinery Trade in North America

This section descriptively analyzes the developing patterns of machinery trade for three North American countries from 1991 to 2011 from the perspective of production networks in North America and their links with East Asia.

3.1. Features Based on The Trade Value

Figure 1 presents the ratios of machinery goods in total exports to and imports from the world in two regions in around 1991 and 2011. The figures array countries in terms of the export share of machinery parts and components. The portion of machinery parts and components is shown with stripes.⁷ The export ratios of machinery parts and components are in particular good indicators to judge how far the country concerned participates in international production networks in machinery industries. All East Asian countries/economies in the figure increased the export ratios of machinery parts and components between 1991 and 2011, which indicates deepening involvements in production networks. The US was already a major exporter of machinery parts and components in 1991, though the export ratios a little declined in 2011. Canada seems to become a relatively less important player in international production networks. Mexico, on the contrary, came into production networks during the period.

Figure 1: Machinery Goods and Machinery Parts and Components for North America and East Asia: Shares in Total Exports and Imports in 1991 and 2011

Note: data for China and Hong Kong in 1991 are not available, and thus data in 1992 and 1993 are used, respectively. Data for the Philippines in the first half of the 1990s is not available.
 Data source: authors' calculation, using data available from UN comtrade.

To demonstrate the pattern of geographical extension of production networks, the following examines disaggregated trade data by destination/origin. Table 3 presents trade values to the world, value indices by major origins/destinations, i.e., the world, East Asia, North American countries, and shares of each origin/destination in total trade (trade to the word) for all machinery imports and exports of three North American countries in 1991 and 2011 (HS84 to 92).⁸ Considering the different nature of sectors even among machinery sectors, Tables 4 and 5 show the corresponding figures in the electric machinery sector (HS85) and transport equipment sector (HS86 to 89).

Table 3: By-origin/destimation Value and Share of Machinery Trade in North America: All Machinery Sectors

		Ori./	j	i) Imports		i	i) Exports	
		Year Dest.	Total	Parts	Final	Total	Parts	Final
(a)	USA							
. ,	Value	1991 World	232.170	93.082	139.088	222.278	111.626	110.653
	(millions US\$)	2011 World	881,143	334,084	547,059	577,691	279,718	297,973
	Value index	2011 World	3.8	3.6	3.9	2.6	2.5	2.7
	(1991=1)	2011 E Asia	3.7	3.7	3.7	2.6	2.7	2.5
		2011 MEX	9.4	6.5	12.5	5.1	5.0	5.4
		2011 CAN	2.1	1.9	2.2	2.6	2.0	3.3
	Share	1991 E.Asia	47.7	41.3	52.0	20.6	21.3	19.9
	(in total (%))	1991 MEX	6.9	8.9	5.5	7.7	10.6	4.8
		1991 CAN	17.9	16.9	18.6	22.3	24.5	20.1
		2011 E.Asia	46.8	43.0	49.2	20.6	23.1	18.2
		2011 MEX	17.0	16.1	17.6	15.1	21.0	9.6
		2011 CAN	9.9	9.2	10.3	22.2	19.9	24.4
	Mariaa							
(D)	Velue	1001 World	12 750	5 276	0 474	9.561	2 1 2 0	5 422
		2011 World	13,750	5,276	8,4/4	8,561	3,128	5,432 125,925
	(millions US\$)	2011 World	1/1,3/3	20.0	61,154	195,044	69,218	125,825
	(1001-1)	2011 World	12.3	120.9	1.2 26.0	22.8 50.2	22.1 50.4	23.2 50.2
	(1991=1)	2011 E.Asia 2011 USA	7.6	129.0	20.9 4 4	23.5	<u> </u>	<u> </u>
		2011 USA 2011 CAN	17.0	12.4	4.4 10 4	23.0	20.5	10.0
	Shara	$\frac{2011 \text{ CAN}}{1001 \text{ E Asia}}$	17.0	25.7	12.4	10.2	13.3	19.9
	(in total (0/2))	1001 US A	61.4	64.0	50.7	70.4	72.1	82.0
	(11101a1(70))	1991 USA 1001 CAN	1.4	04.0	15	19.4	/ 3.1	05.0 4 4
		$\frac{2011}{2011} E Asia$	1.0	1.7	1.J	4.0	4.7	4.4
		2011 E.Asia 2011 USA	42.0	43.5	36.3	1.7 82.8	87.6	80.2
		2011 USA 2011 CAN	21	10	26	3.6	3 /	3.8
		2011 CAN	2.1	1.7	2.0	5.0	5.4	5.0
(c)	Canada							
	Value	1991 World	64,454	32,177	32,276	48,648	19,514	29,134
	(millions US\$)	2011 World	195,427	81,634	113,794	116,269	44,584	71,684
	Value index	2011 World	3.0	2.5	3.5	2.4	2.3	2.5
	(1991=1)	2011 E.Asia	4.4	5.2	4.1	5.0	4.1	6.4
		2011 USA	2.3	1.9	2.7	2.2	2.0	2.2
		2011 MEX	9.8	6.4	13.3	12.7	11.9	14.9
	Share	1991 E.Asia	15.5	9.2	21.7	2.0	3.0	1.3
	(in total(%))	1991 USA	68.1	73.9	62.2	88.2	84.0	91.1
		1991 MEX	2.8	2.9	2.7	0.3	0.6	0.2
		2011 E.Asia	22.6	18.9	25.3	4.2	5.4	3.5
		2011 USA	51.6	56.5	48.0	79.6	74.4	82.9
		2011 MEX	9.1	7.4	10.4	1.8	3.1	0.9

Data source: authors' calculation, using data available from Uncomtrade.

		Ori./	i) Imports		ii) Exports	
		Year Dest.	Total	Parts	Final	Total	Parts	Final
(a)	USA							
	Value	1991 World	62,392	33,004	29,388	49,139	33,758	15,382
	(millions US\$)	2011 World	281,640	109,777	171,863	157,755	97,622	60,133
	Value index	2011 World	4.5	3.3	5.8	3.2	2.9	3.9
	(1991=1)	2011 E Asia	4.3	3.1	5.3	3.3	3.3	3.3
		2011 MEX	6.6	4.2	10.2	5.0	4.2	8.2
		2011 CAN	1.7	1.1	3.4	2.6	1.8	4.3
	Share	1991 E.Asia	60.7	52.4	70.1	28.2	30.8	22.4
	(in total (%))	1991 MEX	13.2	14.9	11.4	12.9	15.0	8.3
		1991 CAN	8.0	11.7	3.9	21.3	21.9	19.8
		2011 E.Asia	57.7	49.5	63.0	29.0	35.1	19.0
		2011 MEX	19.5	18.8	19.9	20.1	21.8	17.3
		2011 CAN	2.9	3.9	2.3	16.9	14.0	21.6
(b)	Mexico							
()	Value	1991 World	3.861	1.784	2.077	868	475	393
	(millions US\$)	2011 World	75.224	53.101	22,123	70.923	29.095	41.827
	Value index	2011 World	19.5	29.8	10.7	81.7	61.3	106.4
	(1991=1)	2011 E.Asia	72.5	179.7	28.5	147.9	109.1	212.9
	````	2011 USA	9.6	13.7	6.2	86.6	67.0	111.2
		2011 CAN	11.2	11.8	10.4	121.1	81.1	137.8
	Share	1991 E.Asia	15.0	9.5	19.8	0.9	1.1	0.8
	(in total(%))	1991 USA	55.4	55.3	55.5	80.3	81.6	78.9
		1991 CAN	1.7	2.0	1.4	2.5	1.4	3.9
		2011 E.Asia	55.9	57.1	53.0	1.7	1.9	1.5
		2011 USA	27.4	25.4	32.3	85.2	89.2	82.4
		2011 CAN	1.0	0.8	1.4	3.8	1.8	5.1
(c)	Canada							
(C)	Value	1991 World	13 580	8460	5 1 1 9	6445	4 847	1 598
	(millions US\$)	2011 World	45 381	19915	25 465	15 344	7 653	7 692
	Value index	2011 World	3.3	2.4	5.0	2.4	1.6	4.8
	(1991=1)	2011 E.Asia	6.4	6.3	6.4	3.8	2.6	7.2
		2011 USA	1.8	1.5	2.4	2.0	1.3	4.4
		2011 MEX	19.6	9.9	36.1	32.7	30.1	48.6
	Share	1991 E.Asia 20		11.2	35.7	4.6	4.6	4.8
	(in total (%))	(%)) 1991 USA 59.3		64.5	50.8	81.4	82.5	78.1
		1991 MEX	2.5	2.6	2.5	0.4	0.4	0.2
		2011 E.Asia	39.0	30.2	46.0	7.4	7.6	7.1
		2011 USA	31.8	41.8	24.0	68.4	65.5	71.3
		2011 MEX	14.9	10.8	18.0	5.3	8.3	2.2

 Table 4: By-origin/destination Value and Share of Machinery Trade in North

 America: Electric Machinery Sector

Data source: authors' calculation, using data available from Uncomtrade.

		Ori./	i	) Imports		ii	) Exports	
		Year Dest.	Total	Parts	Final	Total	Parts	Final
(a)	USA							
	Value	1991 World	83,192	20,081	63,111	72,339	25,949	46,390
	(millions US\$)	2011 World	230,783	65,910	164,873	132,793	47,087	85,706
	Value index	2011 World	2.8	3.3	2.6	1.8	1.8	1.8
	(1991=1)	2011 E Asia	2.1	3.4	1.7	1.2	1.1	1.2
		2011 MEX	10.8	9.8	11.3	4.2	4.0	4.6
		2011 CAN	2.0	1.7	2.0	2.5	1.8	3.0
	Share	1991 E.Asia	39.8	34.2	41.6	16.0	13.2	17.6
	(in total(%))	1991 MEX	5.2	7.5	4.5	6.3	13.3	2.3
		1991 CAN	34.3	31.4	35.2	27.4	36.1	22.5
		2011 E.Asia	29.7	35.2	27.6	10.1	8.2	11.2
		2011 MEX	20.3	22.3	19.5	14.2	29.7	5.7
		2011 CAN	24.2	16.6	27.3	36.6	36.5	36.6
(b)	Mexico							
(~)	Value	1991 World	1.824	640	1.184	4.627	528	4.099
	(millions US\$)	2011 World	30.102	18.880	11.222	65.063	17.664	47.399
	Value index	2011 World	16.5	29.5	9.5	14.1	33.4	11.6
	(1991=1)	2011 E.Asia	65.5	145.5	35.2	141.6	398.6	123.4
	( )	2011 USA	14.3	26.6	7.2	12.1	33.8	9.3
		2011 CAN	42.6	62.5	31.9	20.1	347.8	14.3
	Share	1991 E.Asia	4.8	3.8	5.4	0.2	0.1	0.2
	(in total(%))	1991 USA	65.3	68.2	63.7	87.3	87.4	87.3
		1991 CAN	2.2	2.2	2.2	3.2	0.5	3.6
		2011 E.Asia	19.2	18.7	20.1	2.1	1.4	2.3
		2011 USA	56.5	61.6	48.0	75.3	88.5	70.4
		2011 CAN	5.7	4.6	7.4	4.6	5.1	4.4
(n)	Canada							
(U)	Value	1991 World	26 203	10710	15 583	30 735	7 206	23 520
	(millions US\$)	2011 World	20,293	24 223	13,363	63 407	13 330	50,060
	Value index	2011 World	2.8	24,223	31	2.1	19,557	2.1
	(1991=1)	2011 E Asia	2.0	4.2	1.8	7 4	4.6	10.0
	(1))1-1)	2011 Listism 2011 USA	2.5	1.2	3.0	1.9	1.0	2.0
		2011 OBIT	<u> </u>	4.0	8.1	9.3	6.7	18.2
	Share	1991 E.Asia	15.1	7.1	20.6	0.6	1.1	0.4
	(in total(%))	$\begin{array}{c} 1991 \text{ E.Asia} \\ 1991 \text{ USA} \\ 71. \end{array}$		82.3	64.4	93.9	89.7	95.2
	( (, • ))	1991 MEX	4.1	4.2	4.0	0.3	0.9	0.1
		2011 E.Asia	12.4	13.3	12.0	2.0	2.8	1.8
		2011 USA	65.1	69.2	63.1	88.5	84.5	89.6
		2011 MEX	9.5	7.4	10.5	1.2	3.2	0.7

Table 5: By-origin/destination Value and Share of Machinery Trade in NorthAmerica: Transport Equipment Sector

Data source: authors' calculation, using data available from Uncomtrade.

The tables provide several interesting insights. First of all, both machinery imports and exports by North America have drastically expanded during the last 20 years, and the production sharing in this region has significantly developed particularly in the US-Mexico nexus. As the value index for the world in Table 3 indicates, all machinery imports and exports grew by three to four times and around 2.5 times in these 20 years, respectively, for the US and Canada, and by 13 times and 23 times for Mexico. In addition, imports of machinery parts and components increased by 21 times, and exports of machinery parts and components as well as final products by 22 to 23 times for Mexico (Table 3 (b)). Moreover, the share of Mexico in the US machinery trade was significantly enlarged, particularly imports of final products (from six to 18 percent) and exports of parts and components (from 11 to 21 percent), while the share of Canada in the US imports declined (Table 3 (a)). The share of Mexico also increased for the Canada's machinery trade from three percent to nine percent, but the majority of Canada's trade is still with the US (Table 3 (c)). These evidences suggest that the US has continuously played an central role for machinery trade in North America, and that the expansion of production sharing in North America has been observed mainly in the US-Mexico nexus during the last two decades; the US exports parts and components to Mexico, and Mexico exports final products to the US, using intermediate goods imported from the US.

Second, more interestingly, production networks are not completed within the region particularly in the electric machinery sector. In this sector, the portion of East Asia reached close to 60 percent of the imports by the US and Mexico and 40 percent by Canada in 2011 (Table 4).⁹ Although the share of East Asia slightly declined in the US

from 61 to 58 percent (70 to 63 percent) for the total (final products only), the import value per se grew by four times (five times). For Mexico, imports from East Asia, particularly in machinery parts and components, notably increased: 180 times for parts and components and 29 times for final products (Table 4 (b)). As a result, the import share of East Asia expanded from less than 10 to 57 percent for parts and components and from 20 to 53 percent for final products, while the share of the US declined. Similarly to Mexico, Canada increased in the share of East Asia for both parts and components and final products, while it decreased in the share of the US (Table 4 (c)). These suggest that the production networks in this sector obviously extended beyond the region, with imports of key parts and components as well as finished machinery products from East Asia, particularly from the perspective of the production sharing in the US-Mexico nexus. As Table A.1 in the Appendix clearly shows, many East Asian countries are ranked in the top 20 origins of imports for all three countries in 2011. The dominance of Japan in 1991 was replaced by a rise of China by 2011. The rankings of other East Asian countries including Korea, Malaysia, and possibly Taiwan notably went up in the electric machinery sector.

Note that East Asia occupies over the one-third of the U.S. exports in electric machinery parts and components; the value expanded by three times and the share grew from 31 to 35 percent (Table 4 (a)). Combined with the fact that imports in electric machinery final products from East Asia significantly increased by five times from 21 to 108 billions US\$, though the share slightly declined from 70 to 63 percent, the large and increasing share of East Asia in exports of parts and components and the expanding

imports of final products from East Asia would suggest the US firms' operations behind the strengthening link between the US and East Asia (transactions between US affiliates in East Asia and US parent firms), in addition to the East Asian firms' operations in the US and Mexico (transactions between East Asian affiliates in the US and Mexico and their parent firms and affiliates in East Asia).

Third, in contrast with the electric machinery sector, the intra-regional share is basically higher for both exports and imports in the transport equipment sector, though the share of imports from East Asia increased in parts and components even in this sector for all three countries: from 34 to 35 percent for the US, from four to 19 percent for Mexico, and from seven to 13 percent for Canada (Table 5). The top four origins of imports are the other two North American countries, Japan, and Germany in 2011 for all three North American countries (Table A.1 (i)). If we focus on only parts and components, however, the corresponding origins are Canada/the US, Mexico, Japan, and China for the US and Canada, and the US, Japan, Germany, and China for Mexico (Table A.1 (ii)). Moreover, the portion of Mexico significantly increased for the US imports in parts and components of this sector from eight to 22 percent (Table 5 (a)). These emphasize that production networks expanded from regional to more global with a connection with East Asia on the import side even in the transport equipment sector, but not so extensively as in the electric machinery sector. Industrial clustering and locating firms of supporting industries nearby and close to customers must be more important in the transport equipment sector.

Fourth, a significant amount of transactions between Mexico and East Asia is

through the US. Due to the lack of deep sea ports in Mexico (particularly near the US-Mexico border where many firms operate cross-border production sharing) and logistics reasons, Mexico's exports to East Asia and imports from East Asia go through the Long Beach near Los Angeles in the US. Generally speaking, statistics of exports are based on the first destination, and those of imports are based on the origin. Therefore, Mexico's export data may overestimate to some extent the importance of the US as the final destination of exports, and East Asia's export data may underestimate to some extent its exports to Mexico. Figure A.1. in the Appendix demonstrates this possibility. Of course, import data (cost, insurance and freight: c.i.f.) and export data (free on board: f.o.b) are not exactly the same because imports data include transportation fee and insurance etc, but Mexico's imports from East Asia and East Asia's exports to Mexico are apparently and significantly different since the 2000s; Mexico's imports from East Asia are about twice as large as East Asia's exports to Mexico. This suggests that a significant portion of Mexico's imports from East Asia (i.e., East Asia's exports to Mexico) comes through the US. Similarly, Mexico's exports to East Asia and East Asia's imports from Mexico are different; although Mexico's exports to East Asia per se are much smaller than Mexico's imports from East Asia, they are about a half of East Asia's imports from Mexico. It indicates that a certain portion of Mexico's exports to the US is not for the US but for other countries including East Asia.

#### **3.2. Features Based on The Extensive Margin**

To further investigate changes in trade patterns or the extent and depth of production networks, this subsection focuses on the extensive margin, that is, the number of traded products times the number of trading partners. Figure 2 demonstrates the number of imported product-country pairs by four origins in 1991, 1996, 2001, 2006, and 2011 in all machinery sectors, electric machinery sector, and transport equipment sector, and Figure 3 presents the corresponding number of exported product-country pairs by four destinations.¹⁰ The number for each origin/destination is indexed to the number of the US in 1991 for three origins (destinations) i.e., Mexico, Canada, East Asia, and the number of Canada in 1991 for the US as an origin (destination). The index smaller than one indicates that the country has been less involved in production networks, compared with the situation of the US (or Canada) in 1991, and the increasing number of index suggests that the country has been more deeply involved in fragmentation of production than before. On the other hand, Tables 6 (7) present the percentage of varieties traded with each country of North America (East Asia) among those traded with the world by individual North American country in 1991, 2001, and 2011. 100 percent implies that all varieties that are traded by a concerned country with any country in the world are traded with that country.



#### Figure 2: The Number of Product-country Pairs for Imports by North America

(USA in 1991 = 1 for Asia, MEX, CAN; Canada in 1991 for USA)

Data source: authors' calculation, using data available from UN comtrade.



Figure 3: The Number of Product-country Pairs for Exports by North America

(USA in 1991 = 1 for Asia, MEX, CAN; Canada in 1991 for USA)

Data source: authors' calculation, using data available from UN comtrade.

			•			•	/			
			USA		I	Mexic	0	(	Canad	a
	Ori./ Dest.	1991	2001	2011	1991	2001	2011	1991	2001	2011
i) Imports										
All machinery sectors	USA				99	99	99	99	99	100
	MEX	67	77	80				29	61	74
	CAN	93	94	94	57	75	78			
Electric machinery sector	USA				100	100	100	100	100	100
	MEX	85	92	92				57	87	97
	CAN	95	97	97	71	86	89			
Transport equipment sector	USA				98	98	98	99	99	98
	MEX	52	66	73				24	53	65
	CAN	89	96	94	44	71	73			
ii) Exports										
All machinery sectors	USA				93	96	96	99	99	98
	MEX	99	99	99				29	34	65
	CAN	98	99	98	24	42	51			
Electric machinery sector	USA				95	98	99	99	99	99
	MEX	100	100	100				36	45	82
	CAN	100	100	100	35	56	74			
Transport equipment sector	USA				89	97	94	98	97	94
	MEX	95	92	94				21	29	47
	CAN	<u>9</u> 3	<u>9</u> 9	92	19	45	43			

Table 6: The Share of Varieties Traded with Each North American Country amongThose Traded with The World by Each Country (%)

Data source: authors' calculation, using data available from UNcomtrade.

				i)	Impo	rts							ii)	Expo	rts			
		USA		1	Mexic	0		Canad	a		USA		1	Mexic	0	(	Canada	ı
Ori./ Dest.	1991	2001	2011	1991	2001	2011	1991	2001	2011	1991	2001	2011	1991	2001	2011	1991	2001	2011
All machin	ery sect	ors																
CHN	64	86	94	22	72	93	30	79	95	74	90	94	0	15	39	20	37	69
HKG	59	60	61	31	36	43	40	52	58	87	89	88	4	11	24	30	35	52
IDN	11	35	39	4	25	38	2	22	39	64	64	74	1	4	11	12	12	40
JPN	93	92	90	75	84	84	76	86	88	95	96	92	17	29	35	43	42	57
KOR	64	78	81	17	61	71	41	62	75	91	92	92	1	11	28	28	28	51
MYS	29	49	54	6	36	47	11	34	49	70	80	80	1	7	17	18	19	44
PHL	22	35	39	3	22	31	7	22	36	75	79	76	1	4	10	14	15	35
SGP	46	54	55	14	33	43	20	35	42	87	91	89	4	10	20	30	29	52
THA	31	47	56	5	32	51	10	34	55	76	79	83	0	6	16	19	19	43
Electric ma	achinery	sector	r															
CHN	83	97	100	34	89	99	49	95	100	81	95	98	0	27	61	29	46	87
HKG	83	82	86	52	62	70	62	74	79	97	97	97	7	18	48	44	48	74
IDN	22	60	64	6	55	63	5	43	62	74	73	85	2	4	18	11	13	59
JPN	99	99	98	93	96	97	92	98	98	99	99	98	27	40	48	52	52	75
KOR	84	92	94	36	78	86	70	82	92	96	98	97	1	19	49	42	40	71
MYS	61	76	80	16	68	78	31	64	80	81	90	93	2	12	29	19	30	63
PHL	40	61	64	8	52	57	19	44	64	91	90	88	0	9	19	18	22	46
SGP	79	76	77	30	64	68	46	60	67	97	99	98	8	19	35	43	39	75
THA	54	69	74	8	59	76	19	56	78	88	90	91	1	11	25	23	27	62
Transport	equipm	ent sec	tor															
CHN	43	65	71	15	41	69	13	53	76	59	75	81	0	9	25	10	27	54
HKG	27	35	35	14	13	16	14	21	37	64	72	67	1	4	9	14	21	39
IDN	10	20	27	8	18	23	4	19	26	45	50	56	0	3	6	7	9	25
JPN	73	71	69	47	51	55	54	60	70	85	88	79	14	19	27	35	37	45
KOR	42	57	53	3	32	42	29	38	52	81	82	81	0	8	22	13	21	34
MYS	7	25	25	1	14	22	2	18	26	54	60	59	0	4	6	10	15	36
PHL	15	19	24	1	6	12	2	14	21	65	63	60	1	0	7	4	12	26
SGP	17	23	32	4	8	20	10	16	23	75	75	77	2	3	8	21	22	38
THA	20	27	43	2	18	31	9	21	37	58	60	66	0	6	13	6	18	26

Table 7: The Share of Varieties Traded with Each East Asian Country among ThoseTraded with The World by Each Country (%)

Data source: authors' calculation, using data available from UNcomtrade.

The figures and tables provide four interesting findings. First, the US continuously plays a central role of the North American trade, and the expansion of North American trade, particularly that of Mexican/Canadian trade with the US, is mostly due to an expansion of intensive margin (the value per traded product), rather than that of extensive margin (the number of traded products). Almost all varieties that are traded by Mexico/Canada with any country in the world are traded at least with the US (Table 6). Moreover, the index representing the number of commodities imported from or exported to the US by Mexico/Canada remains more or less stable since 1991, except a decline in 2011 (Figure 2), which suggests that the North American trade expanded mostly due to an

expansion of the intensive margin. Although the relative importance of the US as an origin slightly declined, probably because the expansion of the intensive margin of imports was not so sufficiently large compared with imports from countries outside of the region, their imports from the US *per se* still significantly expanded.

Second, the connection between Canada and Mexico became stronger than before, probably due to the North American Free Trade Agreement (NAFTA), which entered into force on January 1994, particularly from the perspective of parts and components, but not so strong as a link between the US and Mexico. The number of commodities imported from Canada by the US (or the number of commodities exported to the US by Canada) remained more or less stable since 1991 for both parts and components and final products (Figure 2 (3)). On the other hand, the number for imports from Canada by Mexico and that for imports from Mexico by Canada basically tend to increase for both parts and components and final products, probably due to NAFTA; the number for these imports expanded more rapidly for parts and components.¹¹ We have to note that, however, the number for imports from Canada by Mexico is still much smaller than that for imports from Canada by the US in 1991 particularly for machinery final products (less than 80 percent) (Figure 2). The number of exported varieties also confirms this; the number for exports to Canada by Mexico and that for exports to Mexico by Canada are still around 70 percent and 40 to 50 percent of the number for exports to the US at the beginning of the 1990s for parts and components and final products, respectively, though the corresponding numbers tend to increase for both (Figure 3). In other words, the connection between Canada and Mexico became stronger than before from the

perspective of parts and components, probably due to NAFTA, but not so strong as a link between the US and Mexico.

Third, all three countries, particularly Mexico and Canada, dramatically increased the number of machinery product-country pairs for imports from East Asia.¹² In the case of electric machinery parts and components, in particular, Mexico rapidly expanded the variety from much lower level at the beginning of the 1990s (around 40 percent) to the almost same level of the US by 2011 (Figure 2). As Table 7 shows, the percentage of the variety in terms of traded commodities by Mexico in a concerning year rapidly increased for many East Asian countries in the electric machinery sector; for instance from 34 to 99 percent for China, from 93 percent in 1991 to 97 percent in 2011 for Japan, from 36 percent to 86 percent for Korea, 16 to 78 percent for Malaysia, and from eight to 76 percent for Thailand. Combined with the fact that the connection between the US and Mexico is getting stronger as mentioned above, all of these evidences indicate that transactions of Mexico with East Asia become much more active with a greater variety of product-country pairs and that the extent and depth of fragmentation of production in the US-Mexico nexus enhanced with a connection of East Asia particularly in the electric machinery sector. On the export side, the value per se is much smaller than the value of imports (Table 4). Moreover, the extensive margin is still much lower than the level of the US for Mexico, though the number tends to increase, which suggests the growing connection with East Asia in terms of the variety (Figure 3).

Fourth, the connection between North America and East Asia seems to be stronger in the electric machinery sector than the transport equipment sector. The extensive margin is much lower, which indicate the smaller number of traded varieties, for the transport equipment sector than the electric machinery sector in general (Table 7). It can be interpreted as a plausible result, probably reflecting the nature of the sector; the transport equipment sector requires industrial clusters nearby as well as higher transport costs, while parts and components in the electric machinery sector, for instance, are in general smaller and lighter and thus are relatively easy to be transported to countries in a longer distance.

## 4. Machinery Imports of North America from Asia: Gravity Model Estimations

The previous section descriptively demonstrated the expanding fragmentation of production in North America with a strong connection of Mexico, in addition to the US, with East Asia on the import side, based on the value of trade and the extensive margin. This section quantitatively verifies the existence of such a strong connection with East Asia for machinery imports in North America and the evolution of production networks from regional to the Trans-Pacific, using gravity model estimations. The gravity models are estimated for trade in all machinery sectors, trade in the electric machinery sector, and trade in the transport equipment sector, with a distinction between machinery parts and components and final products. Moreover, the paper investigates such patterns not only for the total value of trade but also for the extensive margin (the number of traded product) and the intensive margin (trade value per product) separately. Although exports

to East Asia expanded particularly in terms of the extensive margin, they are still much smaller than imports, and thus this section focuses on a connection of North America, mainly Mexico, with East Asia on the import side.

#### 4.1. Estimation Methodology and Data

The basic equation of our gravity model estimations for bilateral machinery imports of three North American countries is as follows:

$$lnT_{ij} = \alpha + \beta_1 lnDist_{ij} + \beta_2 lnGDP_i + \beta_3 lnGDP_j + \beta_4 lnGDPpc_{ij(i>j)} + \beta_5 lnGDPpc_{ij(i$$

where  $T_{ij}$  denotes the total value of bilateral imports of country *i* from country *j*, *Dist_{ij}* geographical distance between capitals of country *i* and country *j*, *GDP_i* (*GDP_i*) gross domestic products (GDP) of country *i* (*j*), and *GDPpc_{ij}* the absolute term of the difference in GDP per capita between country *i* and country *j*. Note that *GDPpc_{ij(i>j)}* is for the cases of country *i* with higher GDP per capita than that of country *j*, and *GDPpc_{ij(i<j)}* is for the cases of country *i* with lower GDP per capita than that of country *j*.¹³ Distance is regarded as a transport cost or services link cost, and the coefficient is supposed to be negative. GDP is a proxy of the market size, and the coefficient is supposed to be positive. The difference in GDP per capita between two countries can be interpreted as a measure of (the absolute term of) differences in factor endowments. The coefficient will be positive if the difference in factor endowments is one of the important determinants for the pattern of international division of labor in terms of production processes or tasks as the fragmentation theory suggests. However, now that fragmentation of production becomes "networks" and trade at the production-process level is active even between developing countries, the difference in factor endowments may not sufficiently capture the overall trade pattern at the aggregated level.

Since we are interested in possible changes in the effects of transport cost or services link cost as well as the features of imports from East Asia, additional three types of equations are also examined as follows:

$$lnT_{ij} = \alpha + \beta_{1USA} lnDist_{ij}USA + \beta_{1MEX} lnDist_{ij}MEX + \beta_{1CAN} lnDist_{ij}CAN + \beta_{2} lnGDP_{i} + \beta_{3} lnGDP_{j} + \beta_{4} lnGDPpc_{ij(i>j)} + \beta_{5} lnGDPpc_{ij(i$$

 $lnT_{ij} = \alpha + \beta_1 lnDist_{ij} + \beta_2 lnGDP_i + \beta_3 lnGDP_j + \beta_4 lnGDPpc_{ij(i>j)} + \beta_5 lnGDPpc_{ij(i<j)} + \beta_6 E.Asia + \varepsilon,$ (3)

 $lnT_{ij} = \alpha + \beta_1 lnDist_{ij} + \beta_2 lnGDP_i + \beta_3 lnGDP_j + \beta_4 lnGDPpc_{ij(i>j)} + \beta_5 lnGDPpc_{ij(i<j)} + \beta_{6USA}E.AsiaUSA + \beta_{6MEX}E.AsiaMEX + \beta_{6CAN}E.AsiaCAN + \varepsilon,$ (4)

where  $U \ S \ A$ ,  $M \ E \ X$ ,  $a \ n \ d \ C \ A \ N$  are dummy variables with one for the US, Mexico, and Canada, respectively, and zero for others. Similarly,  $E \ .A \ s \ i \ a$  is a dummy variable with one for nine East Asian countries and zero for others. In equations (2) and (4), interaction terms of three North American dummy variables with distance or East Asian dummy are included. As for East Asian dummy, the coefficient would be positive if imports from East Asia are greater than the levels predicted by the model, considering distance and other basic economic conditions. Regarding interaction terms of East Asian dummy with each North American country dummy, the coefficient of

that with Mexico would be (become) positive and be greater than other interaction terms if a connection of Mexico with East Asia becomes stronger.

Moreover, as the total value of trade can be rewritten as the trade value per product multiplied by the number of traded product, the total value of trade can be decomposed into the extensive margin (the number of traded product) and the intensive margin (trade value per product) by taking the form of logarithm. Thus, equation (1), for instance, can be decomposed into the following two equations:

$$lnN_{ij} = \alpha + \beta_1 lnDist_{ij} + \beta_2 lnGDP_i + \beta_3 lnGDP_j + \beta_4 lnGDPpc_{ij(i>j)} + \beta_5 lnGDPpc_{ij(i
(1')$$

$$\begin{split} ln(T_{ij}/N_{ij}) &= \alpha + \beta_1 lnDist_{ij} + \beta_2 lnGDP_i + \beta_3 lnGDP_j + \beta_4 lnGDPpc_{ij(i>j)} + \beta_5 lnGDPpc_{ij(i$$

where  $N_{ij}$  is the number of imported products (extensive margin) and  $T_{ij}$  /  $N_{ij}$  is the import value per product (intensive margin). This paper regards the number of imported products at the HS 6-digit level as the measure of the extensive margin, namely the number of commodities at the HS 6-digit level with positive import values, and the total values of imports divided by the number of imported products as the measure of intensive margin.¹⁴

Based on the above-mentioned equations, we investigate the link of North America with East Asia in both years, 1991 and 2011, for imports in all machinery sectors, those in the electric sector, and those in the transport equipment sector, with a distinction between machinery parts and components and final products. By comparing the results, we

would like to capture the features of machinery imports by North American countries, particularly those from East Asia and see whether any significant changes between 1991 and 2011 exist between different machinery sectors, between extensive and intensive margins, and between parts and components and final products.

Table A.2 in the Appendix lists 60 countries in the sample: countries are restricted to those with more than 0.01 percent of machinery imports from the world in 2011 by at least one North American country as well as necessary data such as GDP and GDP per capita for both years. The data on trade values in US dollars are obtained from UN comtrade¹⁵, geographical distance are from CEPII database¹⁶, and GDP and GDP per capita are from the World Development Indicators online¹⁷. The number of products imported from each country is counted as the number of commodities with positive import values at the HS1992 six-digit level, and the import value per product is obtained by dividing the total value of imports by the number of imported products.

There exist zeros in our bilateral trade matrix. A drop of observations with zero trade cannot utilize potentially useful information and may cause sample selection bias. As suggested in the previous section, the extensive margin significantly expanded from 1991 to 2011, particularly for the Mexican imports. For a comparison of the results in 1991 with those in 2011, it is important to include observations with zero trade, particularly for the estimations on the extensive margin. Considering that the treatment of zero-valued trade is regarded as a major issue in the literature, the above-mentioned gravity equations are estimated with the pseudo Poisson maximum likelihood (PPML) method, which is proposed by Silva and Tenreyro (2006).¹⁸ PPML technique enables us

to estimate gravity models, including observations with zero trade, without taking the form of logarithm for dependent variable (that is, the dependent variable is the actual value). Note that equations (1') and (1") with the actual value of dependent variable do not mean the exact decomposition of equation (1) any more with PPML technique

#### **4.2.** The Estimation Results

Tables 8 and 9 show the results for the total imports in parts and components and final products, respectively, in all machinery sectors, the electric machinery sector, and the Tables 10 and 11, on the other hand, present the transport equipment sector. corresponding results for the extensive and intensive margins; only the cases with East Asian dummy is displayed here. The major findings are as follows: first, the services link cost may be reduced, and/or the export competitiveness of East Asia with a longer distance from North America may be strengthened, particularly in the electric machinery sector (Tables 8 and 9). The coefficient for distance in the absolute term becomes smaller when the results for 1991 are compared with those for 2011, except the case with East Asia dummy for electric final products (equations c-8/11 and d-8/11 in Table 9). Moreover, the coefficient for distance for electric machinery parts and components became insignificant any more in 2011 as the results for equations a-2 and a-5 in Table 8 show. These indicate a possible reduction in services link cost such as the transport cost, which accelerates the international fragmentation of production even beyond the region, particularly for the electric machinery parts and components, and the strengthened competitiveness of East Asia in this sector.

-		1991			2011					1991			2011	
	All	Elec	Trans	All	Elec	Trans		All		Elec	Trans	All	Elec	Trans
a) PPML							c) PPML (East	t Asia dun	nmy)					
	(1)	(2)	(3)	(4)	(5)	(6)	· · ·	(1)		(2)	(3)	(4)	(5)	(6)
Dist	-0.89 ***	-0.84 ***	-1.27 ***	-0.41 **	-0.22	-0.77 **	Dist	-1.13	***	-1.37 *	*** -1.39 ***	-0.86 ***	-1.05 ***	-0.99 ***
	(0.08)	(0.19)	(0.10)	(0.21)	(0.32)	(0.30)		(0.10)	)	(0.21)	(0.06)	(0.18)	(0.24)	(0.25)
GDPi	1.21 ***	1.23 ***	1.46 ***	0.73 ***	0.50 ***	0.93 ***	GDPi	0.96	***	0.98 *	*** 1.14 ***	0.68 ***	0.48 ***	0.85 ***
	(0.10)	(0.17)	(0.15)	(0.12)	(0.17)	(0.11)		(0.09)	)	(0.15)	(0.12)	(0.10)	(0.14)	(0.12)
GDPj	1.12 ***	0.98 ***	1.41 ***	1.10 ***	0.86 ***	1.32 ***	GDPj	0.96	***	0.70 *	*** 1.29 ***	0.87 ***	0.57 ***	1.17 ***
	(0.10)	(0.15)	(0.11)	(0.11)	(0.16)	(0.17)		(0.11)	)	(0.17)	(0.08)	(0.11)	(0.13)	(0.15)
GDPpcij	0.18	0.44 *	0.23	0.04	0.10	0.15	GDPpcij	0.05		0.29	0.13	0.09	0.16	0.18
(i>j)	(0.13)	(0.23)	(0.17)	(0.16)	(0.20)	(0.28)	(i>	-j) (0.16)	)	(0.31)	(0.16)	(0.14)	(0.18)	(0.26)
GDPpcij	0.25 **	0.52 **	0.30 *	0.05	0.08	0.18	GDPpcij	0.06		0.28	0.13	0.11	0.17	0.21
(i <j)< td=""><td>(0.12)</td><td>(0.22)</td><td>(0.16)</td><td>(0.15)</td><td>(0.20)</td><td>(0.25)</td><td>(i&lt;</td><td>(0.15)</td><td>)</td><td>(0.36)</td><td>(0.16)</td><td>(0.13)</td><td>(0.18)</td><td>(0.23)</td></j)<>	(0.12)	(0.22)	(0.16)	(0.15)	(0.20)	(0.25)	(i<	(0.15)	)	(0.36)	(0.16)	(0.13)	(0.18)	(0.23)
							E.Asia	1.51	***	2.32 *	*** 1.27 ***	1.43 ***	2.29 ***	0.83 **
								(0.33)	)	(0.51)	(0.29)	(0.30)	(0.39)	(0.34)
Cons.	-37.96	-38.44 ***	-52.17 ***	-26.64 ***	-16.50 **	-38.53 ***	Cons.	-23.63	***	-18.42 *	** -37.79 ***	-15.69 ***	-1.90	-30.64 ***
	(5.24)	(8.55)	(6.48)	(4.84)	(7.47)	(5.80)		(5.87)	)	(10.02)	(5.56)	(4.76)	(5.91)	(5.93)
D2	0.044	0.771	0.076	0.715	0.451	0 707	D2	0.042		0.797	0.087	0.729	0.517	0.710
RZ Pseudo LL	-3.66E+10	-2.72E+10	-4.85E+09	-2.34E+11	-1.63E+11	-3.77E+10	RZ Pseudo LL	-2.56E+10	) -	0.787 1.64E+10	-3.75E+09	-1.77E+11	-1.10E+11	-3.44E+10
b) PPML (dist	ance* each l	North Ameri	can dummy)			-	d) PPML (East	t Asia dur	nmy *	each No	orth American du	mmy)		-
	(1)	(2)	(3)	(4)	(5)	(6)		(1)		(2)	(3)	(4)	(5)	(6)
							Dist	-1.11	***	-1.33 *	*** -1.39 ***	-0.91 ***	-1.17 ***	-0.99 ***
								(0.08)	)	(0.18)	(0.06)	(0.19)	(0.26)	(0.26)
Dist*USA	-0.87 ***	-0.71 **	-1.43 ***	-0.79 **	-0.73	-1.14 **								
	(0.14)	(0.34)	(0.07)	(0.33)	(0.51)	(0.52)								
Dist*MEX	-0.90 ***	-1.11 ***	-0.86 ***	-0.42 ***	-0.39 *	-0.59 ***								
	(0.12)	(0.20)	(0.13)	(0.13)	(0.23)	(0.20)								
Dist*CAN	-0.81 ***	-0.94 ***	-0.77 ***	-0.67 ***	-0.72 ***	-0.82 ***								
	(0.09)	(0.15)	(0.11)	(0.17)	(0.25)	(0.31)								
GDPi	1.31 *	0.28	3.55 ***	1.61	1.14	2.44 **	GDPi	0.83	***	0.75 *	** 1.13 ***	0.70 ***	0.54 **	0.84 ***
ann:	(0.73)	(1.49)	(0.42)	(1.06)	(1.81)	(1.24)	(CDD)	(0.12)	)	(0.23)	(0.16)	(0.17)	(0.26)	(0.17)
GDPj	1.14 ***	0.97 ***	1.58 ***	1.09 ***	0.86 ***	1.35 ***	GDPj	0.95	***	0.68 *	1.29 ***	0.8/ ***	0.57 ***	1.16 ***
	(0.13)	(0.18)	(0.11)	(0.10)	(0.13)	(0.13)	6000 II	(0.11)	)	(0.17)	(0.09)	(0.11)	(0.12)	(0.13)
GDPpcij	0.25 *	0.50 *	0.43 ***	0.07	0.21	0.17	GDPpcij	0.05		0.25	0.14	0.12	0.25	0.18
(Þj)	(0.15)	(0.27)	(0.16)	(0.16)	(0.20)	(0.29)	(D)	>j) (0.16	)	(0.38)	(0.17)	(0.14)	(0.18)	(0.27)
GDPpcij	0.31 **	0.57 **	0.50 ***	-0.02	0.06	0.10	GDPpcij	0.04		0.26	0.14	0.12	0.22	0.21
(i <j)< td=""><td>(0.14)</td><td>(0.27)</td><td>(0.14)</td><td>(0.12)</td><td>(0.16)</td><td>(0.21)</td><td>(K</td><td>(0.15) 1.74</td><td>)</td><td>(0.38)</td><td>(0.16)</td><td>(0.13)</td><td>(0.17)</td><td>(0.24)</td></j)<>	(0.14)	(0.27)	(0.14)	(0.12)	(0.16)	(0.21)	(K	(0.15) 1.74	)	(0.38)	(0.16)	(0.13)	(0.17)	(0.24)
							E.Asia~USA	. 1.74		2.01 *	(0.26)	1.39 ****	2.20 ***	0.85 *
							E A .:- *MEV	(0.40)	)	(0.64)	(0.56)	(0.56)	(0.47)	(0.49)
							E.Asia~MEA	(0.25)		(0.22)	-1.15 ****	2.19 ****	0.95	1.05 ***
							E A *CAN	(0.25)	) ***	(0.52)	(0.50)	(0.60)	(0.85)	(0.52)
							E.Asia~CAN	(0.10)		1.52 *	(0.22)	0.56 *	1.02 ***	0.56
Com	42.05 *	11.70	110 55 388	40.99	22.22	82.22 **	Com	10.42	) ***	(0.50)	(0.22)	(0.51)	(0.50)	(0.40)
COIIS.	(23.96)	-11.70	-118.55	-49.00	-52.55	(34.44)	COIIS.	-19.43	1	(12.56)	-57.40	(5.69)	-3.45	(6.32)
	(23.90)	(+0.44)	(14.10)	(31.29)	(33.31)	(34.44)		(0.74)	,	(12.30)	(0.94)	(3.09)	(0.01)	(0.52)
R2	0.948	0.779	0.987	0.763	0.580	0.752	R2	0.952		0.812	0.987	0.748	0.563	0.716
Pseudo LL	-3.53E+10	-2.62E+10	-3.50E+09	-1.97E+11	-1.32E+11	-3.39E+10	Pseudo LL	-2.37E+10	) -	1.50E+10	-3.53E+09	-1.60E+11	-9.46E+10	-3.41E+10

Table 8: Gravity Model Estimations for Machinery Imports of North America:Parts and Components

*Notes*: figures in parenthesis ares tandard deviation. *** indicates that the results are statistically significant at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level. *Data*: authors' calculation.

	1991 2011						1991			2011			
	All	Elec	Trans	All	Elec	Trans		All	Elec	Trans	All	Elec	Trans
a) PPML							c) PPML (East A	Asia dummy)					
	(7)	(8)	(9)	(10)	(11)	(12)		(7)	(8)	(9)	(10)	(11)	(12)
Dist	-0.78 ***	-0.34	-1.25 ***	-0.58 **	-0.40	-0.94 ***	Dist	-1.18 ***	-1.28 ***	-1.43 ***	-1.09 ***	-1.37 ***	-1.15 ***
	(0.16)	(0.30)	(0.19)	(0.26)	(0.56)	(0.27)		(0.11)	(0.24)	(0.10)	(0.22)	(0.39)	(0.27)
GDPi	1.34 ***	1.25 ***	1.91 ***	1.10 ***	0.95 ***	1.19 ***	GDPi	1.02 ***	1.02 ***	1.35 ***	1.00 ***	0.93 ***	1.13 ***
	(0.14)	(0.16)	(0.27)	(0.14)	(0.22)	(0.18)		(0.06)	(0.14)	(0.16)	(0.11)	(0.17)	(0.20)
GDPj	1.12 ***	1.11 ***	1.37 ***	1.26 ***	1.35 ***	1.09 ***	GDPj	0.84 ***	0.75 ***	1.07 ***	0.95 ***	0.91 ***	0.94 ***
	(0.11)	(0.15)	(0.13)	(0.14)	(0.15)	(0.18)		(0.12)	(0.16)	(0.13)	(0.08)	(0.08)	(0.16)
GDPpcij	0.15	0.63 ***	-0.02	0.21	0.70 **	-0.16	GDPpcij	-0.09	0.46	-0.29 *	0.23	0.71 ***	-0.14
(i>j)	(0.12)	(0.22)	(0.19)	(0.19)	(0.30)	(0.25)	(i>j)	(0.16)	(0.33)	(0.17)	(0.15)	(0.27)	(0.23)
GDPpcij	0.26 **	0.70 ***	0.12	0.19	0.61 **	-0.19	GDPpcij	-0.06	0.49	-0.26	0.21 *	0.65 ***	-0.17
(i <j)< td=""><td>(0.12)</td><td>(0.22)</td><td>(0.18)</td><td>(0.17)</td><td>(0.29)</td><td>(0.22)</td><td>(i<j)< td=""><td>(0.16)</td><td>(0.34)</td><td>(0.17)</td><td>(0.12)</td><td>(0.25)</td><td>(0.20)</td></j)<></td></j)<>	(0.12)	(0.22)	(0.18)	(0.17)	(0.29)	(0.22)	(i <j)< td=""><td>(0.16)</td><td>(0.34)</td><td>(0.17)</td><td>(0.12)</td><td>(0.25)</td><td>(0.20)</td></j)<>	(0.16)	(0.34)	(0.17)	(0.12)	(0.25)	(0.20)
							E.Asia	2.21 ***	2.83 ***	2.16 ***	1.64 ***	2.36 ***	0.85
								(0.35)	(0.44)	(0.47)	(0.33)	(0.37)	(0.54)
Cons.	-42.44 ***	-48.65 ***	-61.55 ***	-41.97 ***	-47.85 ***	-35.89 ***	Cons.	-20.27 ***	-23.71 ***	-33.42 ***	-26.78 ***	-27.16 ***	-27.34
	(5.84)	(7.83)	(9.53)	(6.86)	(7.27)	(8.48)		(5.41)	(8.79)	(6.33)	(4.23)	(5.11)	(8.67)
R2	0.921	0.817	0.935	0.719	0.782	0.725	R2	0.971	0.901	0.974	0.819	0.864	0.732
Pseudo LL	-6.44E+10	-2.41E+10	-2.09E+10	-3.19E+11	-1.39E+11	-1.15E+11	Pseudo LL	-3.17E+10	-1.03E+10	-1.33E+10	-2.19E+11	-8.52E+10	-1.07E+11
b) PPML (dist	tance* report	(8)	(9)	(10)	(II)	(12)	d) PPML (East A	Asia dummy	each North	American du	(10)	(11)	(12)
	(/)	(0)	(2)	(10)	(11)	(12)	Dist	-1.16 ***	-1.23 ***	-1.45 ***	-1.12 ***	-1.51 ***	-1.16 ***
								(0.11)	(0.23)	(0.09)	(0.24)	(0.45)	(0.28)
Dist*USA	-0.93 ***	0.03	-1.58 ***	-0.93 **	-1.00	-1.36 ***		(0111)	(00)	(0.07)	(0)	()	()
	(0.18)	(0.81)	(0.11)	(0.41)	(0.74)	(0.46)							
Dist*MEX	-0.43 ***	-0.82 ***	-0.07	-0.18	0.04	-0.35							
	(0.13)	(0.24)	(0.14)	(0.13)	(0.20)	(0.22)							
Dist*CAN	-0.45 ***	-0.50 ***	-0.21 *	-0.36 *	-0.30	-0.57 **							
	(0.09)	(0.13)	(0.09)	(0.19)	(0.24)	(0.27)							
GDPi	2 95 ***	-1.03	644 ***	3 43 ***	4.05	4 29 ***	GDPi	0.93 ***	0.76 ***	154 ***	1 03 ***	1 00 ***	1 17 ***
	(0.90)	(3.20)	(0.55)	(1.22)	(2.57)	(1.38)		(0.11)	(0.29)	(0.17)	(0.21)	(0.36)	(0.25)
GDPi	1.19 ***	1.10 ***	1.64 ***	1.34 ***	1.44 ***	1.21 ***	GDPi	0.83 ***	0.74 ***	1.12 ***	0.95 ***	0.91 ***	0.96 ***
	(0.14)	(0.18)	(0.13)	(0.14)	(0.18)	(0.17)		(0.13)	(0.15)	(0.13)	(0.08)	(0.08)	(0.16)
GDPncii	0.23 *	0.74 **	0.08	0.23	0.78 ***	-0.17	GDPncii	-0.09	0.43	-0.27	0.24	0.79 ***	-0.14
(ipi)	(0.14)	(0.29)	(0.21)	(0.19)	(0.25)	(0.25)	(ipi)	(0.16)	(0.37)	(0.21)	(0.16)	(0.27)	(0.23)
GDPncii	034 **	0.81 ***	0.24	0.15	0.56 ***	-0.29	GDPncii	-0.07	0.45	-0.22	0.21 *	0.68 ***	-0.18
(i <i)< td=""><td>(0.13)</td><td>(0.30)</td><td>(0.19)</td><td>(0.14)</td><td>(0.20)</td><td>(0.20)</td><td>(i<i)< td=""><td>(0.16)</td><td>(0.35)</td><td>(0.21)</td><td>(0.13)</td><td>(0.24)</td><td>(0.20)</td></i)<></td></i)<>	(0.13)	(0.30)	(0.19)	(0.14)	(0.20)	(0.20)	(i <i)< td=""><td>(0.16)</td><td>(0.35)</td><td>(0.21)</td><td>(0.13)</td><td>(0.24)</td><td>(0.20)</td></i)<>	(0.16)	(0.35)	(0.21)	(0.13)	(0.24)	(0.20)
(-)	(0.12)	(0.50)	(0.17)	(0.1.1)	(0.20)	(0.20)	E Asia*USA	2 32 ***	3.05 ***	1.81 ***	1.62 ***	2 34 ***	0.79
							Linski Obri	(0.39)	(0.56)	(0.47)	(0.41)	(0.45)	(0.61)
							E Acio*MEY	0.77 **	1 10 ***	0.60	2 21 ***	3 86 ***	1.02
							E.ASIA WIEA	(0.36)	(0.30)	(0.52)	(0.72)	(1.44)	(1.02)
							E Asis#CAN	2.06 ***	0.39)	2.22 ***	(0.72)	2.02 ***	1.00)
							E.Asa CAN	(0.20)	(0.22)	(0.28)	(0.20)	(0.62)	(0.50)
Com	00.90 ***	14.21	200.15 ***	112.11 ***	120.65 *	100.01 ***	Cons	(0.50)	(0.32)	(0.38)	(0.30)	(0.02) 29.76 ***	(0.39) 20 07 888
COIIS.	(20.14)	(01.99)	(17.25)	(25.50)	-139.05	-120.21*	COIS.	-17.33	-10.12	(7.41)	-21.32 ****	-20.70	-20.0/
	(28.14)	(91.88)	(17.25)	(35.50)	(70.14)	(36.65)		(0.59)	(13.01)	(7.41)	(0.05)	(10.02)	(9.50)
<b>R</b> 2	0.946	0.837	0.986	0.746	0.815	0.752	<b>R</b> 2	0.969	0.915	0.984	0.822	0.874	0.735

Table 9: Gravity Model Estimations for Machinery Imports of North America:Final Products

Notes: figures in parenthesis ares tandard deviation. *** indicates that the results are statistically

significant at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.

Data: authors' calculation.

		All machin	nery sectors			Electric mac	hinery sectors			Transport eq	upment sector	•
	19	91	20	11	- 19	991	20	011	1	991	2	011
	Extensive	Intensive	Extensive	Intensive	Extensive	Intensive	Extensive	Intensive	Extensive	Intensive	Extensive	Intensive
c) PPML (East	Asia dummy)											
Dist	-0.09	-1.13 ***	0.00	-0.99 ***	-0.13	-1.38 ***	0.01	-1.27 ***	-0.11	-1.30 ***	0.03	-0.98 ***
	(0.10)	(0.12)	(0.04)	(0.18)	(0.10)	(0.20)	(0.04)	(0.25)	(0.10)	(0.06)	(0.04)	(0.22)
GDPi	0.31 ***	0.82 ***	0.06 ***	0.61 ***	0.27 ***	* 0.91 ***	0.03 *	0.47 ***	0.33 **	* 0.95 ***	0.08 **	* 0.78 ***
	(0.06)	(0.07)	(0.02)	(0.10)	(0.06)	(0.12)	(0.02)	(0.14)	(0.06)	(0.12)	(0.02)	(0.11)
GDPj	0.47 ***	0.68 ***	0.23 ***	0.63 ***	0.43 ***	* 0.51 ***	0.18 ***	0.33 **	0.54 **	* 1.06 ***	0.28 **	* 1.06 ***
-	(0.03)	(0.10)	(0.01)	(0.11)	(0.04)	(0.14)	(0.01)	(0.14)	(0.04)	(0.08)	(0.02)	(0.12)
GDPpcij	-0.03	0.04	-0.04 **	0.09	-0.01	0.26	-0.04 ***	0.20	-0.04	0.11	-0.02	0.18
 (i>i	i) (0.04)	(0.14)	(0.02)	(0.13)	(0.05)	(0.31)	(0.01)	(0.18)	(0.04)	(0.14)	(0.02)	(0.23)
GDPpcij	0.02	0.05	-0.02	0.09	0.03	0.30	-0.03 *	0.19	-0.03	0.10	-0.02	0.20
(i<	i) (0.04)	(0.13)	(0.02)	(0.13)	(0.04)	(0.30)	(0.02)	(0.18)	(0.04)	(0.13)	(0.02)	(0.20)
E.Asia	0.16	1.80 ***	0.15 ***	1.65 ***	0.42 **	2.48 ***	0.21 ***	2.48 ***	0.12	1.32 ***	0.04	0.91 ***
	(0.19)	(0.32)	(0.06)	(0.30)	(0.19)	(0.46)	(0.05)	(0.38)	(0.19)	(0.26)	(0.06)	(0.31)
Cons.	-15.13 ***	-17.81 ***	-2.35 ***	-11.63 **	-13.79 ***	* -15.76 **	-1.13	2.18	-19.84 **	* -30.03 ***	-6.96 **	* -29.14 ***
	(2.32)	(4.46)	(0.78)	(4.98)	(2.45)	(7.71)	(0.80)	(6.14)	(2.37)	(4.83)	(0.94)	(5.29)
	( )		()	(			(,		(	(,	( )	
R2	0.596	0.878	0.646	0.669	0.514	0.726	0.561	0.396	0.638	0.973	0.654	0.701
Pseudo LL	-5.54E+03	-9.35E+07	-2.40E+03	-5.77E+08	-2.46E+03	-1.46E+08	-1.21E+03	-1.13E+09	-7.20E+02	-1.46E+08	-6.22E+02	-8.74E+08
d) PPML (East	Asia dummy	* each North	American dur	nmy)								
Dist	-0.08	-1.12 ***	0.01	-1.04 ***	-0.12	-1.35 ***	0.01	-1.41 ***	-0.10	-1.29 ***	0.03	-0.99 ***
	(0.10)	(0.10)	(0.04)	(0.19)	(0.10)	(0.17)	(0.04)	(0.26)	(0.10)	(0.05)	(0.04)	(0.23)
GDPi	0.30 ***	0.67 ***	0.07 ***	0.62 ***	0.27 ***	* 0.67 ***	0.03	0.54 **	0.34 **	* 0.89 ***	0.09 **	* 0.77 ***
	(0.05)	(0.10)	(0.02)	(0.17)	(0.05)	(0.18)	(0.02)	(0.25)	(0.06)	(0.15)	(0.02)	(0.16)
GDPj	0.47 ***	0.67 ***	0.23 ***	0.62 ***	0.42 ***	* 0.50 ***	0.18 ***	0.34 ***	0.54 **	* 1.05 ***	0.28 **	* 1.05 ***
	(0.03)	(0.10)	(0.01)	(0.11)	(0.04)	(0.14)	(0.01)	(0.13)	(0.04)	(0.08)	(0.02)	(0.11)
GDPpcij	-0.03	0.03	-0.04 **	0.13	-0.02	0.23	-0.04 ***	0.30	-0.04	0.11	-0.03	0.18
(i>j	j) (0.04)	(0.13)	(0.02)	(0.13)	(0.05)	(0.32)	(0.02)	(0.18)	(0.04)	(0.14)	(0.02)	(0.24)
GDPpcij	0.02	0.03	-0.02	0.11	0.03	0.25	-0.03 *	0.24	-0.03	0.10	-0.02	0.21
(i<	j) (0.04)	(0.13)	(0.02)	(0.13)	(0.04)	(0.31)	(0.02)	(0.18)	(0.04)	(0.13)	(0.02)	(0.21)
E.Asia*USA	0.18	2.06 ***	0.13	1.65 ***	0.43	2.77 ***	0.21 **	2.40 ***	0.09	1.42 ***	0.00	0.95 **
	(0.33)	(0.39)	(0.09)	(0.34)	(0.32)	(0.57)	(0.08)	(0.42)	(0.30)	(0.34)	(0.10)	(0.46)
E.Asia*MEX	-0.04	-0.26	0.09	2.42 ***	0.22	0.27	0.15 **	3.80 ***	0.01	-1.07 ***	-0.06	1.18 **
	(0.16)	(0.25)	(0.06)	(0.59)	(0.19)	(0.29)	(0.07)	(0.87)	(0.21)	(0.32)	(0.07)	(0.49)
E.Asia*CAN	0.28	1.25 ***	0.25 ***	0.65 *	0.56 *	1.57 ***	0.29 ***	1.21 **	0.26	1.43 ***	0.18 *	0.53
	(0.27)	(0.24)	(0.08)	(0.35)	(0.28)	(0.33)	(0.08)	(0.55)	(0.25)	(0.26)	(0.10)	(0.40)
Cons.	-14.92 ***	-13.06 **	-2.43 ***	-11.74 **	-13.61 ***	* -8.44	-1.11	-0.15	-19.93 **	* -28.37 ***	-7.10 **	* -28.46 ***
	(2.11)	(5.44)	(0.82)	(5.81)	(2.21)	(10.07)	(0.87)	(7.41)	(2.22)	(5.81)	(0.99)	(5.88)
R2	0.591	0.901	0.651	0.694	0.510	0.759	0.565	0.491	0.640	0.975	0.661	0.716
Pseudo LL	-5.51E+03	-8.49E+07	-2.38E+03	-5.22E+08	-2.45E+03	-1.33E+08	-1.21E+03	-9.59E+08	-7.19E+02	-1.39E+08	-6.18E+02	-8.47E+08

Table 10: Gravity Model Estimations for Machinery Imports of North America(Extensive and Intensive Margins): Parts and Components

*Notes*: figures in parenthesis ares tandard deviation. *** indicates that the results are statistically significant at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level. *Data*: authors' calculation.

		All machin	ery sectors			Electric mac	hinery sectors			Transport eq	upment sector	
	19	91	20	11	- 19	91	20	11	- 19	991	20	011
	Extensive	Intensive	Extensive	Intensive	Extensive	Intensive	Extensive	Intensive	Extensive	Intensive	Extensive	Intensive
c) PPML (East	Asia dummy)											
Dist	-0.11	-1.13 ***	-0.08	-1.05 ***	-0.16	-1.22 ***	-0.04	-1.33 ***	-0.32 ***	-1.07 ***	-0.15 **	-1.02 ***
	(0.11)	(0.10)	(0.05)	(0.20)	(0.10)	(0.22)	(0.04)	(0.37)	(0.11)	(0.13)	(0.08)	(0.21)
GDPi	0.31 ***	0.81 ***	0.12 ***	0.89 ***	0.26 ***	0.90 ***	0.08 ***	0.90 ***	0.37 ***	0.92 ***	0.20 ***	0.97 ***
	(0.06)	(0.06)	(0.03)	(0.11)	(0.07)	(0.11)	(0.02)	(0.16)	(0.05)	(0.15)	(0.04)	(0.16)
GDPj	0.54 ***	0.50 ***	0.37 ***	0.70 ***	0.44 ***	0.55 ***	0.26 ***	0.81 ***	0.73 ***	0.86 ***	0.56 ***	0.71 ***
2	(0.04)	(0.10)	(0.02)	(0.06)	(0.04)	(0.12)	(0.02)	(0.07)	(0.04)	(0.11)	(0.03)	(0.11)
GDPpcii	-0.05	-0.07	-0.06 **	0.18	-0.05	0.38	-0.04 **	0.67 ***	-0.01	-0.14	-0.07 **	-0.11
(i>i	) (0.04)	(0.14)	(0.02)	(0.15)	(0.04)	(0.27)	(0.02)	(0.25)	(0.04)	(0.18)	(0.03)	(0.19)
GDPpcij	0.00	-0.04	-0.03	0.14	0.00	0.41	-0.02	0.61 ***	-0.01	-0.13	-0.05	-0.17
(i <j< td=""><td>) (0.03)</td><td>(0.14)</td><td>(0.02)</td><td>(0.13)</td><td>(0.04)</td><td>(0.27)</td><td>(0.02)</td><td>(0.22)</td><td>(0.04)</td><td>(0.16)</td><td>(0.03)</td><td>(0.17)</td></j<>	) (0.03)	(0.14)	(0.02)	(0.13)	(0.04)	(0.27)	(0.02)	(0.22)	(0.04)	(0.16)	(0.03)	(0.17)
E.Asia	0.18	2.50 ***	0.19 **	1.70 ***	0.62 ***	2.94 ***	0.28 ***	2.36 ***	-0.02	1.96 ***	-0.05	1.10 **
	(0.21)	(0.32)	(0.08)	(0.28)	(0.19)	(0.39)	(0.07)	(0.35)	(0.18)	(0.36)	(0.12)	(0.47)
Cons.	-16.62 ***	-11.65 ***	-6.91 ***	-22.36 ***	-13.71 ***	-19.10 ***	-4.76 ***	-28.17 ***	-24.40 ***	-22.79 ***	-16.18 ***	-21.04 ***
	(2.56)	(3.81)	(1.05)	(3.94)	(2.63)	(6.47)	(0.93)	(4.68)	(2.45)	(5.03)	(1.62)	(6.91)
R2	0.657	0.906	0.715	0.743	0.537	0.852	0.617	0.842	0.786	0.902	0.732	0.609
Pseudo LL	-5.96E+03	-1.07E+08	-3.54E+03	-5.17E+08	-1.89E+03	-1.08E+08	-1.12E+03	-9.03E+08	-5.09E+02	-7.17E+08	-7.15E+02	-2.76E+09
					-				-			
d) PPML (East	Asia dummy ¹	* each North	American dun	umy)								
Dist	-0.11	-1.12 ***	-0.08	-1.06 ***	-0.15	-1.19 ***	-0.04	-1.44 ***	-0.32 ***	-1.08 ***	-0.14 **	-1.02 ***
	(0.11)	(0.10)	(0.05)	(0.22)	(0.10)	(0.20)	(0.04)	(0.42)	(0.11)	(0.12)	(0.07)	(0.22)
GDPi	0.32 ***	0.66 ***	0.14 ***	0.87 ***	0.27 ***	0.64 ***	0.09 ***	0.93 ***	0.43 ***	• 0.97 ***	0.23 ***	* 0.97 ***
	(0.05)	(0.09)	(0.03)	(0.19)	(0.05)	(0.23)	(0.03)	(0.33)	(0.06)	(0.24)	(0.04)	(0.20)
GDPj	0.54 ***	0.48 ***	0.37 ***	0.69 ***	0.44 ***	0.54 ***	0.26 ***	0.81 ***	0.70 ***	0.85 ***	0.57 ***	* 0.71 ***
	(0.04)	(0.10)	(0.02)	(0.06)	(0.04)	(0.12)	(0.02)	(0.07)	(0.04)	(0.11)	(0.03)	(0.11)
GDPpcij	-0.05	-0.08	-0.06 ***	0.19	-0.05	0.36	-0.05 **	0.73 ***	-0.03	-0.13	-0.07 **	-0.11
(i>j	) (0.04)	(0.13)	(0.02)	(0.16)	(0.04)	(0.29)	(0.02)	(0.25)	(0.04)	(0.19)	(0.03)	(0.19)
GDPpcij	0.00	-0.06	-0.03	0.15	0.00	0.39	-0.02	0.63 ***	0.00	-0.11	-0.05	-0.17
(i <j< td=""><td>) (0.03)</td><td>(0.13)</td><td>(0.02)</td><td>(0.13)</td><td>(0.04)</td><td>(0.30)</td><td>(0.02)</td><td>(0.22)</td><td>(0.04)</td><td>(0.18)</td><td>(0.03)</td><td>(0.17)</td></j<>	) (0.03)	(0.13)	(0.02)	(0.13)	(0.04)	(0.30)	(0.02)	(0.22)	(0.04)	(0.18)	(0.03)	(0.17)
E.Asia*USA	0.12	2.70 ***	0.11	1.74 ***	0.54	3.18 ***	0.22 **	2.37 ***	-0.16	1.85 ***	-0.27	1.11 **
	(0.35)	(0.38)	(0.12)	(0.36)	(0.33)	(0.52)	(0.11)	(0.43)	(0.30)	(0.39)	(0.17)	(0.55)
E.Asia*MEX	0.18	0.85 ***	0.15	2.07 ***	0.57 ***	1.44 ***	0.24 ***	3.65 ***	0.11	-0.23	-0.10	1.12
	(0.21)	(0.33)	(0.10)	(0.59)	(0.21)	(0.47)	(0.09)	(1.27)	(0.20)	(0.75)	(0.16)	(0.81)
E.Asia*CAN	0.28	2.27 ***	0.34 ***	1.25 ***	0.78 **	2.40 ***	0.40 ***	1.91 ***	0.04	2.56 ***	0.27 **	1.03 *
	(0.30)	(0.30)	(0.11)	(0.27)	(0.31)	(0.31)	(0.11)	(0.53)	(0.21)	(0.55)	(0.14)	(0.55)
Cons.	-16.93 ***	-6.91	-7.30 ***	-21.44 ***	-14.11	-11.70	-5.00 ***	-28.52 ***	-25.23	-24.12 ***	-17.16 ***	-20.85 ***
	(2.25)	(5.17)	(1.08)	(6.26)	(2.28)	(10.18)	(0.97)	(9.34)	(2.32)	(7.35)	(1.59)	(7.81)
R2	0.663	0.910	0.722	0.749	0.541	0.868	0.623	0.853	0.794	0.912	0.770	0.608
Pseudo LL	-5.95E+03	-9.82E+07	-3.50E+03	-5.07E+08	-1.88E+03	-9.88E+07	-1.12E+03	-8.36E+08	-5.08E+02	-6.76E+08	-7.02E+02	-2.76E+09

Table 11: Gravity Model Estimations for Machinery Imports of North America(Extensive and Intensive Margins): Final Products

Notes: figures in parenthesis are standard deviation. *** indicates that the results are statistically significant at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.
Data: authors' calculation.

Second, the link of North America with East Asia is strong, and the connection of Mexico with East Asia in particular becomes much tighter than other North American countries (the US and Canada) in the electric machinery sector. The coefficient for East Asia is positive and statistically significant (equations c in Tables 8 and 9). In addition, the coefficient is much greater for the electric machinery sector than the transport equipment sector when the results in the same years are compared. Moreover, the coefficient for the interaction term of East Asia with Mexico became positive with statistical significance not only for the total value (equations d-2 and d-5 in Table 8) but

also for both extensive and intensive margins (equations d in Table 10) in the case of electric machinery parts and components. Furthermore, the coefficient for the interaction term of East Asia with Mexico became larger than that for the corresponding term with the US or Canada for both electric parts and components and components and final products (equation d-5 in Tables 8 and 9). With controlling distance and other economic conditions, these results suggest that North America, particularly Mexico's connection with East Asia, became stronger than the average predicted by the model, which is particularly true for the electric machinery sector, by the expansion of both intensive and extensive margins.

Third, imports from East Asia by North America are greater than the average predicted by the model in terms of both the import value per product (intensive margin) and the number of imported products (extensive margin) in the electric machinery sector for both parts and components and final products, while they are larger in terms of the intensive margin only for both in the transport equipment sector (equations c in Tables 10 and 11). It implies that North American imports from East Asia grow not only as the results of an expansion of the trade value per product but also as the results of an increase in the number of variety in the electric machinery sector, unlike the case of transport equipment sector where only the intensive margin seem to contribute to an increase in imports. As mentioned in the previous section, such a sectoral difference probably reflects the nature of the sector; the transport equipment sector requires industrial clusters nearby as well as higher transport costs, while parts and components in the electric machinery sector, for instance, are in general smaller and lighter and thus are relatively

easy to be transported between countries in long distance.

Regarding control variables other than distance, the coefficients for GDP in exporting country and importing country are positive and statistically significant in most estimations. However, such a tendency seems to become weaker since these coefficients are smaller for 2011 than for 1991. Regarding the difference in GDP per capita, the results are mixed; some are positive and statistically significant while others are not. In particular, equations in 2011 have no statistical results any more for income gap (Table 8). As discussed in subsection 4.1, the difference in factor endowments at the macro level may not sufficiently capture the overall trade pattern with fragmentation of production.

#### **5. Summary and The Implication for Economic Integration**

This paper investigated developing patterns of machinery trade in North America to analyze the extent and depth of production networks in North America with a link to East Asia. Our descriptive analysis based on the total value of trade and the extensive margin clearly demonstrated the expanding fragmentation of production in North America with a stronger connection of Mexico, in addition to the US, with East Asia on the import side. The extent and depth of production networks in North America grew from the expanding production sharing based on the US-Mexico nexus to the one in the Trans-Pacific with a stronger connection with East Asia of Mexico in addition to the US, particularly in the electric machinery sector. Our quantitative analysis not only on the total value of trade but also extensive and intensive margins also verified the existence of such a strong connection with East Asia for machinery imports in North America, where Mexico enhanced a role of bridging between East Asia and the US. These evidences partially reflect the reduction in services link costs, the evolution of production sharing in the US-Mexico nexus due to various measures that promote activities of MNEs in Mexico such as the Maquiladora, PROSEC (The Program of Sectoral Promotion), and NAFTA, and the strengthening competitiveness for production networks in East Asia in machinery sectors. Behind that, the US firms with operations in East Asia and the East Asian firms (say, Japanese and Korean firms) with operations in Mexico should have significantly contributed to the strengthening connection of Mexico with East Asia as a bridge between the US and East Asia.

As Baldwin (2011) claims, the 2nd unbundling requires a new international policy environment beyond simple tariff removal. Service link costs contain various aspects of transaction costs in international production networks. One of the major components is physical transport cost for materials, parts and components, and final products. In the 1st unbundling, monetary transport cost primarily matters. For the 2nd unbundling, not only monetary transport cost but also time cost as well as the reliability of logistics links is going to be crucial. Therefore, policies supporting international transactions expand from relatively simplistic tariff removal to the removal of non-tariff barriers (NTBs), trade facilitation including customs clearance, logistics and related services liberalization, physical and institutional logistics infrastructure development, and others. Service link costs also include coordination costs; thus, the convergence or harmonization of economic institutions also gains importance. Furthermore, beyond service link costs, newly developed economies and less developed countries typically need to improve their location advantages to invite production blocks; services and investment liberalization, provision of economic infrastructure services such as electricity supply, reform in government procurement, the improvement of intellectual property right protection and competition policy, and the overall betterment of business environment are going to be at issue.

While the World Trade Organization (WTO) has unfortunately lost momentum for expanding its coverage of policy modes at least in the short run, free trade agreements (FTAs) can be an innovative tool for improving international policy environment for the  $2^{nd}$  unbundling. Even in FTAs, tariff removal is still at the center of the effort toward trade liberalization, and the coverage of tariff removal is still one of the important indicators for measuring the quality of FTAs. The utilization of FTA preferential tariffs is not automatic; to capture the fruit of tariff reduction/removal, rules of origin (ROOs) should be user-friendly, and compliance cost including the cost of obtaining certificate of origin must be low. Beyond tariffs, FTAs can enjoy ample flexibility in setting the scope of policy modes. Typical high-level FTAs cover NTBs, services liberalization, investment liberalization, government procurement, intellectual property right protection, competition policy, environment, labor, and even economic cooperation. Actually, in the conclusion of FTA between Japan and Mexico, not only tariff reduction but also activities of business environment council that was established under the FTA has greatly contributed to the expansion of trade and FDI as well as the improvement of business

environment (Ando, 2007).

Trans-Pacific Strategic Economic Partnership Agreement (TPP) is currently under negotiation (as of October 2013) and attracts a lot of attention in both academic and journalistic contexts. Although details of the negotiation have not been disclosed, it is announced to target a high level of liberalization as well as international rule making as a mega FTA. The intention of the US delegation may not primarily focus on policy environment for the 2nd unbundling in the manufacturing sector. However, once concluded, TPP seems to work for constructing a better policy environment for international production networks. In particular, TPP may achieve a high coverage of tariff removal, at least vis-à-vis the East Asian standard; services and investment liberalization; government procurement; intellectual property rights protection; competition policy; and dispute settlement. The current set of negotiating countries does not cover the whole Trans-Pacific production networks. However, we may observe a further domino effect as having additional participants in the near future. Even without it, TPP negotiation has already provided good stimulus on negotiations over other FTAs, which include Regional Comprehensive Economic Partnership (RCEP) covering ASEAN+6, China-Japan-Korea FTA, and Japan-EU FTA. If TPP became more likely to be concluded, other FTA negotiations would surely accelerate the process, and the quality of their conclusions would get better. Competition over international rule making among mega FTAs might also work in a benevolent direction.

As for production networks in machinery industries, direct effects of TPP may or may not be significant. For electronics industry, tariffs have been mostly removed by the Information Technology Agreement (ITA) initiative as well as China's WTO accession, rather than trade liberalization under regionalism, and thus effects of further tariff removal by TPP would be limited. However, international rule making may accelerate the improvement of location advantages for production networks, particularly in newly developed economies and less developed countries currently not participating in TPP negotiation. For automobile industry, there still exist high MFN tariffs as well as possible NTBs, and thus FTAs in general have good potential for obtaining tangible economic gains. However, weak attitude of the US toward automobile industry liberalization is big concern in TPP. Tariff removals under TPP seem to end up with being incomplete or at least delayed. Furthermore, there is some concern on possible acceptance of uncommon tariff concession schedules and business-unfriendly ROOs with ineffective cumulative rule, all of which would particularly serious in automobile industry may rather be accelerated due to TPP.

#### References

- Ando, M. (2007), 'Impacts of Japanese FTAs/EPAs: Preliminary Post Evaluation', The International Economy, 11, pp. 57-83.
- Ando, M.and F.Kimura (2005), 'The Formation of International Production and Distribution Networks in East Asia', in Ito, T. and A. Rose (eds.), *International Trade* (NBER-East Asia Seminar on Economics, Volume 14), Chicago: The University of Chicago Press, pp.177-213.

- Ando, M. and F. Kimura (2013), 'Production Linkage of Asia and Europe via Central Eastern Europe', *Journal of Economic Integration*, 28(2), pp.204-240.
- Athukorala, P.-C. (2011a), 'Production Networks and Trade Patterns in East Asia: Regionalization or Globalization?', *Asian Economic Papers*, 10(1), pp.65-95.
- Athukorala, P.-C. (2011b), 'Growing with Global Production Sharing: the Tale of Export Hub', Australian National University Working Papers in Trade and Development No. 1011/13 (<u>http://www.crawford.anu.edu.au/acde/publications/</u>).
- Baldwin, R. (2011), '21st Century Regionalism: Filling the Gap between 21st Century Trade and 20th Century Trade Rules', *CEPR Policy Insight* No. 56.
- Elms, D. K. and P. Low (eds.) (2013), *Global Value Chains in a Changing World*. Geneva: The World Trade Organisation
- ERIA (2010), *Comprehensive Asia Development Plan*. Jakarta: ERIA Available at: <u>http://www.eria.org/publications/research_project_reports/the-comprehensive-as</u> <u>ia-development-plan.html</u>).
- Flam, H. and H. Nordstrom (2011), 'Gravity Estimation of the Intensive and Extensive margins of Trade: An Alternative Procedure with Alternative Data', *CESifo Working Paper* No. 3387.
- Haddad, M., A. Harrison and C. Hausman (2010), 'Decomposing the Great Trade Collapse: Products, Prices, and Quantities in the 2008-2009 Crisis', NBER Working Paper No. 16253.
- Hayakawa, K., F. Kimura and K. Nabeshima (2011), 'Non-conventional Provisions in Regional Trade Agreements: Do They Enhance International Trade?', *IDE Discussion Paper* No. 310 (September).
- Helpman, E., M. Melitz and Y. Rubinstein (2008), 'Estimating Trade Flows: Trading Partners and Trading Volumes', *Quarterly Journal of Economics*, 123(2), pp.441-487.
- Hummels, D. and P. J. Klenow (2005), 'The Variety and Quality of a Nation's Exports', *American Economic Review*, 95(3), pp.704-723.

- Johnson, R. C. and G. Noguera (2012a), 'Accounting for Intermediates: Production Sharing and Trade in Value Added', *Journal of International Economics*, 86(2), pp.224-236.
- Johnson, R. C. and G. Noguera (2012b), 'Proximity and Production Fragmentation', *American Economic Review*, 102(3), pp.407-411.
- Kehoe, T. J. and K. J. Ruhl (2013), 'How Important Is the New Goods Margin in International Trade?', *Journal of Political Economy*, 121(2), pp.358-392.
- Kimura, F. (2010), 'The Spatial Structure of Production/Distribution Networks and Its Implication for Technology Transfers and Spillovers', in Hiratsuka, D. and Y. Uchida (eds.), *Input Trade and Production Networks in East Asia*, Cheltenham: Edward Elgar, pp.158-180.
- Kimura, F. and M. Ando (2005), 'Two-dimensional Fragmentation in East Asia: Conceptual Framework and Empirics', *International Review of Economics and Finance* 14, pp.317-348.
- Klier, T., P. Ma, and D. P. McMillen (2004), 'Comparing Location Decisions of Domestic and Foreign Auto Supplier Plant', Federal Reserve Bank of Chicago WP 2004-27.
- Mattoo, A., Z. Wang, and S.-J. Wei (eds.) (2013), *Trade in Value Added: Developing New Measures of Cross-border Trade*. Washington, D.C.: The World Bank.
- Mayer, T. and S. Zignago (2011), 'Notes on CEPII's Distances Measures: The GeoDist Database", *CEPII Working Paper* No. 2011-25.
- Silva, J.M.C.S. and S. Tenreyro (2006), 'The Log of Gravity', *Review of Economics and Statistics*, 88(4), pp.641-658.

### APPENDIX

# Table A.1.: The Rankings of Importing Partners and Their Shares in Trade withThe World by Each North American Country

#### i) Machinery Goods including Both Parts and Components and Final Products

		All m	achinery	sector	s		F	Electric	machin	ery sec	tor		Т	ranspor	t equipn	nent se	ctor	
	USA		Mexic	:0	Canad	a	USA		Mexic	20	Canad	la	USA		Mexic	:0	Canad	a
		%		%		%		%		%		%		%		%		%
Year	: 1991																	
1	JPN	34.2	USA	61.4	USA	68.1	JPN	32.4	USA	55.4	USA	59.3	JPN	37.7	USA	65.3	USA	71.7
2	CAN	17.9	JPN	7.8	JPN	11.8	MEX	13.2	JPN	11.1	JPN	11.7	CAN	34.3	FRA	13.6	JPN	13.8
3	DEU	7.4	DEU	7.0	DEU	3.3	CAN	8.0	SWE	5.9	SPC	7.0	DEU	7.3	JPN	4.2	MEX	4.1
4	MEX	6.9	FRA	4.2	MEX	2.8	KOR	7.4	DEU	5.3	KOR	3.0	MEX	5.2	DEU	3.6	FRA	3.0
5	Asia	4.6	ITA	2.8	FRA	2.1	Asia	5.9	PRK	3.2	DEU	2.8	GBR	2.7	BRA	3.1	DEU	2.9
6	GBR	3.8	SWE	2.0	SPC	1.7	MYS	5.7	FRA	3.0	MEX	2.5	FRA	2.7	CAN	2.2	KOR	1.0
7	SGP	3.5	GBR	1.7	GBR	1.6	SGP	4.6	Asia	1.7	Asia	1.9	SWE	1.7	Asia	2.0	GBR	0.9
8	KOR	3.5	BRA	1.6	KOR	1.5	CHN	4.3	CAN	1.7	MYS	1.6	KOR	1.7	GBR	1.9	Asia	0.5
9	FRA	2.9	CAN	1.6	Asia	1.3	DEU	3.5	SGP	1.5	CHN	1.5	ITA	1.3	NOR	0.8	SWE	0.4
10	MYS	1.8	Asia	1.4	ITA	0.8	HKG	2.2	ITA	1.3	GBR	1.4	Asia	1.2	IND	0.6	ITA	0.4
11	CHN	1.7	CHE	1.3	SWE	0.7	THA	2.2	GBR	1.3	FRA	1.3	NLD	0.9	ESP	0.6	BRA	0.1
12	ITA	1.6	ESP	1.3	SGP	0.6	GBR	2.1	ESP	1.2	SGP	1.0	BRA	0.6	HKG	0.4	CHE	0.1
13	SWE	1.3	PRK	1.2	CHN	0.5	PHL	1.7	BRA	1.1	HKG	1.0	BEL	0.5	ITA	0.4	SPC	0.1
14	HKG	1.3	HKG	0.6	CHE	0.5	FRA	1.1	HKG	0.9	CHE	0.8	AUS	0.5	ARG	0.2	THA	0.1
15	CHE	1.1	SGP	0.5	HKG	0.4	ISR	0.7	KOR	0.7	SWE	0.6	ESP	0.4	CHN	0.2	AUT	0.1
16	THA	0.9	NLD	0.5	MYS	0.4	SWE	0.7	PAN	0.7	NLD	0.5	ISR	0.3	GTM	0.2	NOR	0.1
17	NLD	0.9	BEL	0.5	NLD	0.3	CHE	0.6	NLD	0.7	ITA	0.3	CHN	0.2	BEL	0.1	NLD	0.1
18	BRA	0.7	PAN	0.3	IRL	0.2	ITA	0.6	CHE	0.7	PHL	0.3	CHE	0.1	NLD	0.1	BEL	0.1
19	PHL	0.6	KOR	0.3	AUT	0.2	NLD	0.5	BEL	0.5	THA	0.3	HUN	0.1	PAN	0.1	CHN	0.0
20	ISR	0.5	ARG	0.3	THA	0.2	IRL	0.3	CHN	0.3	ESP	0.2	SGP	0.1	PRK	0.0	SGP	0.0
Year	: 2011																	
1	CHN	24.8	USA	37.3	USA	51.6	CHN	35.3	CHN	30.1	USA	31.8	CAN	24.2	USA	56.5	USA	65.1
2	MEX	17.0	CHN	22.9	CHN	12.4	MEX	19.5	USA	27.4	CHN	26.1	MEX	20.3	JPN	11.4	MEX	9.5
3	JPN	11.8	JPN	7.4	MEX	9.1	JPN	6.6	KOR	10.0	MEX	14.9	JPN	19.5	DEU	7.0	JPN	7.4
4	CAN	9.9	KOR	6.1	JPN	5.6	Asia	6.5	JPN	6.0	Asia	4.0	DEU	11.6	CAN	5.7	DEU	5.3
5	DEU	7.3	DEU	4.9	DEU	4.3	KOR	5.7	MYS	5.4	JPN	3.4	KOR	5.6	CHN	3.6	KOR	2.8
6	KOR	4.6	MYS	2.9	KOR	2.5	MYS	4.5	Asia	4.7	KOR	3.2	CHN	4.3	KOR	3.5	CHN	2.1
7	Asia	3.3	Asia	2.5	GBR	1.9	CAN	2.9	CRI	3.1	DEU	2.4	GBR	2.8	BRA	3.0	GBR	1.8
8	GBR	2.3	CAN	2.1	Asia	1.7	DEU	2.7	DEU	2.3	MYS	2.3	FRA	2.6	ESP	1.7	FRA	1.0
9	MYS	2.1	THA	1.5	FRA	1.1	CRI	2.3	THA	1.6	THA	1.7	ITA	1.3	FRA	1.0	ITA	0.5
10	FRA	2.0	BRA	1.4	ITA	1.0	THA	2.3	PHL	1.5	PHL	1.2	Asia	1.1	ITA	1.0	Asia	0.5
11	ITA	1.5	CRI	1.4	MYS	0.8	PHL	1.4	CAN	1.0	SGP	0.8	ZAF	1.0	IND	0.9	ZAF	0.4
12	THA	1.3	ITA	1.3	THA	0.6	SGP	1.1	SGP	0.7	FRA	0.8	BEL	0.7	ARG	0.9	NOR	0.3
13	SGP	1.1	ESP	1.0	SWE	0.5	GBR	0.9	ESP	0.7	DNK	0.7	BRA	0.6	GBR	0.6	CHE	0.3
14	CHE	1.1	PHL	0.9	CHE	0.5	ITA	0.7	FRA	0.5	GBR	0.7	SWE	0.6	Asia	0.5	SWE	0.2
15	CRI	0.9	FRA	0.8	ARE	0.4	IDN	0.7	IND	0.5	SWE	0.5	IND	0.5	THA	0.5	SVK	0.2
16	IRL	0.7	SGP	0.6	SGP	0.4	FRA	0.6	BRA	0.4	ITA	0.4	AUT	0.4	SWE	0.4	BEL	0.2
17	NLD	0.7	GBR	0.6	PHL	0.3	IND	0.5	ITA	0.4	ISR	0.3	TUR	0.4	BEL	0.3	TUR	0.2
18	SWE	0.7	CHE	0.5	DNK	0.3	ISR	0.5	IDN	0.4	IDN	0.3	SVK	0.3	POL	0.2	AUT	0.1
19	PHL	0.6	IND	0.5	POL	0.3	CHE	0.4	SWE	0.4	CHE	0.3	AUS	0.3	AUT	0.2	FIN	0.1
20	AUT	0.6	SWE	0.4	AUT	0.3	DNK	0.4	GBR	0.3	IND	0.3	ISR	0.2	IDN	0.2	IND	0.1

*Note*: Asia is "Other Asia, nes", which can be regarded mostly as Taiwan, and SPC is "Special Categories" in the list of UN comtrade.

Data: authors' calculation, using data available from UN comtrade.

### (Continue)

#### ii) Machinery Parts and Components

		All m	achinery	sectors	s		H	Electric	machin	ery sect	tor		Т	ranspor	t equipn	nent se	ctor	
	USA		Mexic	:0	Canad	a	USA		Mexic	:0	Canad	la	USA		Mexic	o	Canad	la
		%		%		%		%		%		%		%		%		%
Year	: 1991																	
1	JPN	28.8	USA	64.0	USA	73.9	JPN	27.5	USA	55.3	USA	64.5	JPN	32.3	USA	68.2	USA	82.3
2	CAN	16.9	DEU	6.9	JPN	7.0	MEX	14.9	SWE	11.0	SPC	11.0	CAN	31.4	DEU	7.9	JPN	6.1
3	MEX	8.9	JPN	6.1	SPC	3.3	CAN	11.7	JPN	8.0	JPN	6.7	MEX	7.5	Asia	4.6	MEX	4.2
4	DEU	7.2	SWE	3.9	MEX	2.9	KOR	6.9	DEU	6.5	DEU	3.7	GBR	4.9	GBR	4.1	DEU	1.5
5	GBR	5.3	FRA	3.8	DEU	2.9	Asia	6.5	FRA	3.5	MEX	2.6	FRA	4.7	JPN	3.6	GBR	1.4
6	Asia	5.0	ITA	2.3	GBR	2.0	MYS	5.5	CAN	2.0	Asia	1.6	ITA	4.0	FRA	2.9	KOR	0.9
7	FRA	4.7	GBR	2.1	FRA	1.3	SGP	5.1	Asia	1.7	KOR	1.4	DEU	3.7	CAN	2.2	FRA	0.9
8	SGP	3.2	CAN	1.7	Asia	1.0	DEU	4.4	ITA	1.7	FRA	1.3	Asia	2.1	BRA	1.6	ITA	0.5
9	KOR	3.2	BRA	1.6	KOR	0.9	PHL	2.6	BRA	1.7	GBR	1.3	ESP	1.6	ESP	1.5	SWE	0.5
10	ITA	2.3	Asia	1.5	ITA	0.8	GBR	2.4	GBR	1.4	HKG	0.9	BRA	1.2	IND	1.4	Asia	0.4
11	MYS	2.1	ESP	1.2	SWE	0.7	HKG	1.9	ESP	1.2	MYS	0.8	KOR	0.9	ITA	0.8	AUT	0.3
12	BRA	1.2	CHE	0.9	HKG	0.4	THA	1.8	NLD	1.1	SWE	0.7	ISL	0.9	ARG	0.6	SPC	0.3
13	HKG	1.2	NLD	0.6	AUT	0.3	FRA	1.3	PRK	1.0	SGP	0.6	AUS	0.7	NLD	0.1	NLD	0.2
14	SWE	1.1	PRK	0.5	NLD	0.3	ISL	0.9	CHE	0.7	CHE	0.5	SWE	0.6	BEL	0.1	BRA	0.1
15	PHL	1.0	HKG	0.4	SGP	0.3	CHN	0.9	HKG	0.7	PHL	0.4	NLD	0.4	SGP	0.1	ESP	0.1
16	CHE	1.0	BEL	0.4	CHE	0.3	SWE	0.8	BEL	0.5	NLD	0.4	CHE	0.4	PRK	0.1	BEL	0.1
17	ISL	0.9	ARG	0.3	CHN	0.2	ITA	0.7	SGP	0.4	ITA	0.3	BEL	0.4	HKG	0.0	IRL	0.1
18	THA	0.9	IND	0.2	MYS	0.2	CHE	0.6	PRT	0.3	CHN	0.3	CHN	0.4	CHN	0.0	CHE	0.0
19	CHN	0.8	SGP	0.2	BRA	0.2	IRL	0.4	KOR	0.2	ESP	0.3	HUN	0.3	IDN	0.0	SGP	0.0
20	NLD	0.7	DNK	0.2	ESP	0.2	NLD	0.4	MYS	0.2	BEL	0.1	SGP	0.3	VEN	0.0	VEN	0.0
Year	: 2011																	
1	CHN	18.4	USA	37.9	USA	56.5	CHN	21.5	CHN	25.8	USA	41.8	MEX	22.3	USA	61.6	USA	69.2
2	MEX	16.1	CHN	20.8	CHN	8.5	MEX	18.8	USA	25.4	CHN	14.0	JPN	17.5	JPN	11.1	JPN	7.4
3	JPN	13.1	JPN	8.4	MEX	7.4	JPN	9.5	KOR	13.0	MEX	10.8	CAN	16.6	DEU	6.8	MEX	7.4
4	CAN	9.2	KOR	7.8	JPN	5.5	MYS	6.4	JPN	7.1	Asia	4.8	CHN	11.1	CHN	4.9	CHN	4.6
5	DEU	7.4	DEU	4.7	DEU	3.3	Asia	6.1	MYS	6.4	KOR	4.4	DEU	7.1	CAN	4.6	GBR	2.9
6	KOR	4.4	MYS	3.3	GBR	3.0	CRI	5.9	Asia	4.9	JPN	3.8	KOR	5.7	KOR	2.2	DEU	1.6
7	Asia	3.7	Asia	2.9	KOR	2.2	KOR	5.0	CRI	4.3	DEU	3.1	GBR	2.8	BRA	1.9	KOR	1.2
8	GBR	3.0	CRI	2.1	Asia	1.9	DEU	4.4	DEU	2.4	MYS	2.4	Asia	2.7	ITA	1.0	Asia	1.0
9	FRA	2.9	CAN	1.9	ITA	1.3	CAN	3.9	PHL	2.0	PHL	2.3	FRA	2.5	IND	0.8	FRA	0.8
10	MYS	2.9	BRA	1.2	FRA	1.2	PHL	2.6	THA	1.6	THA	1.5	ITA	2.2	Asia	0.8	ITA	0.6
11	ITA	2.2	THA	1.2	MYS	0.8	SGP	2.1	CAN	0.8	SGP	1.4	IND	1.3	FRA	0.7	IND	0.2
12	CRI	2.0	PHL	1.1	PHL	0.6	THA	1.5	SGP	0.8	FRA	1.1	BRA	0.8	ESP	0.7	POL	0.2
13	SGP	1.7	ITA	0.9	POL	0.6	GBR	1.3	FRA	0.5	GBR	0.8	AUS	0.7	SWE	0.6	ESP	0.2
14	IND	1.0	FRA	0.7	THA	0.6	FRA	1.1	IND	0.4	SWE	0.6	ESP	0.5	THA	0.3	AUT	0.1
15	THA	1.0	SGP	0.5	SWE	0.5	ITA	1.0	SWE	0.4	CRI	0.5	NLD	0.5	POL	0.2	BRA	0.1
16	PHL	1.0	ESP	0.5	SGP	0.5	IND	0.7	ITA	0.3	ITA	0.5	AUT	0.5	AUT	0.2	CZE	0.1
17	AUT	0.9	IND	0.5	IND	0.3	ISL	0.7	IDN	0.3	IND	0.4	BEL	0.5	CZE	0.2	BEL	0.1
18	BRA	0.8	GBR	0.4	CHE	0.3	CHE	0.6	ESP	0.3	CHE	0.3	TUR	0.4	TUR	0.2	AUS	0.1
19	CHE	0.8	SWE	0.4	NLD	0.3	IDN	0.6	CHE	0.3	ISL	0.3	ISL	0.4	GBR	0.2	NLD	0.1
20	SWE	0.7	CHE	0.3	AUT	0.3	AUT	0.4	CZE	0.3	IDN	0.3	CZE	0.4	ARG	0.1	RUS	0.1

*Note*: Asia is "Other Asia, nes", which can be regarded mostly as Taiwan, and SPC is "Special Categories" in the list of UN comtrade.

Data: authors' calculation, using data available from UN comtrade.



Figure A.1.: Mexico's Machinery Trade with East Asia through the US

Data source: UN comtrade.

ID	Name	ID	Name	ID	Name
ARG	Argentina	HUN	Hungary	POL	Poland
AUS	Australia	ISL	Iceland	PRT	Portugal
AUT	Austria	IDN	Indonesia	ROM	Romania
BEL	Belgium	IRL	Ireland	RUS	Russia
BRA	Brazil	ISR	Israel	IND	India
BGR	Bulgaria	ITA	Italy	SGP	Singapore
CAN	Canada	JPN	Japan	SVK	Slovakia
CHL	Chile	KOR	Korea	VNM	Viet Nam
CHN	China	LUX	Luxembourg	SVN	Slovenia
COL	Colombia	MYS	Malaysia	ZAF	South Africa
CRI	Costa Rica	MLT	Malta	ESP	Spain
CZE	Czech Rep.	MEX	Mexico	SWE	Sweden
DNK	Denmark	MAR	Morocco	CHE	Switzerland
DOM	Dominican Rep.	NLD	Netherland	THA	Thailand
FIN	Finland	NZL	New Zealand	ARE	UAE
FRA	France	NIC	Nicaragua	TUN	Tunisia
DEU	Germany	NOR	Norway	TUR	Turkey
GRC	Greece	PAK	Pakistan	UKR	Ukraine
HND	Honduras	PER	Peru	GBR	UK
HKG	Hong Kong	PHL	Philippines	USA	USA

**Table A.2.: The List of Countries** 

#### **ENDNOTES**

^{*} The authors would like to thank Deborah Swenson, Somkiat Tangkitvanich, Jung Sung Chun, Prema-Chandra Athukorala, and other participants in Asian Economic Panel Meeting in Keio University for useful comments.

¹ See, for example, Elms and Low (2013).

² The recent value added trade literature includes Mattoo, et al. (2013) and Johnson and Noguera (2012a).

More detailed discussion on four layers of transactions is found in Kimura (2010) and ERIA (2010).

4 In the descriptive argument, we use "electronics" and "automobiles" as industries reflecting typical industry characteristics, while the following data analysis sticks to "electric machinery (HS85)" and "transport equipment (HS86-89)" as clearly defined industry categories.

5 Athukorala (2011a) claims that production networks are largely regional though final products travel across regions, which is consistent with the findings of this paper.

6 See Athukorala (2011b) for the importance of a local vendor networks and others in the case of Penang, Malaysia.

Machinery is defined as Harmonized System (HS) 84-92. Machinery parts and components are as follows: 8406, 8407, 8408, 8409, 8410, 8411, 8412, 8413, 8414, 8416, 8417. 8466, 8473, 8481, 8482, 8483, 8485, 8431, 8448, 8480, 8484, 8503, 8505. 8507. 8511. 8512. 8522. 8529. 8531. 8532. 8533. 8534. 8535. 8536. 8537. 8540, 8541. 8544. 8545. 8547. 8548. 8538, 8539, 8542. 8546, 8607. 8706, 8708. 9001, 9014. 8714, 8803. 8805, 9002. 9003. 9013, 9033. 8707. 9104. 9110. 9111. 9112. 9113. 9114. 9209. 840140. 840290. 840390. 840490. 840590. 841590, 841891, 841899, 841990, 842091, 842099, 842123, 842129, 842131, 842490, 843590, 842191, 842199, 842290, 843390, 843490, 842390, 843290, 843991, 843999, 843691. 843699. 843790. 843890, 844090, 844190, 844240, 844250, 844390, 845090, 845190, 845240, 845290, 845390, 845490, 845590, 846791, 846792, 846799, 846890, 847490, 847590, 847690, 847790, 847890, 847990, 850490, 850690, 850890, 850990, 851090, 851390, 851490, 851590, 851690, 851790. 851840. 851850. 851890. 853090. 854390. 870990. 871690. 900590, 900791, 900792, 900990, 900691, 900699, 900890, 901090, 901190, 901590, 901790, 902990. 901290. 902490, 902590, 902690, 902790, 902890.

903190, 903290 (the version of HS1992 (See Ando and Kimura (2005)). Machinery 903090, final products are defined as those other than parts and components.

⁸ The paper defines East Asia as the nine East Asian countries (China, Hong Kong, Indonesia, Japan, Korea, Malaysia, the Philippines, Singapore, and Thailand). Although Taiwan is also an important player in production networks in East Asia, the data for this economy is not unfortunately available from the database (UN Comtrade) explicitly as either reporter or partner.

As mentioned in footenote 7. Taiwan is also an important player in production networks in East Asia. The corresponding share of East Asia should be raised if Taiwan is included, though East Asia in this paper does not include it. Considering that "Other Asia" in Table A.1 in the Appendix could be mostly regarded as Taiwan, the portion of East Asia can further rise by up to five to six percent.

10 Figures 2 and 3 present the number for parts and components or final products. The corresponding figures for the total including both are available upon request.

11 This is consistent with the finding by Kehoe and Ruhl (2013) where "least traded goods" contribute to the trade expansion between Canada and Mexico for the whole merchandise trade. "Least traded goods" are likely to include newly traded goods presented in Table 6.  $12^{12}$  A going sector in the sector in t

Again, consistent with Kehoe and Ruhl (2013), trade between China and the US expands extensive margins. However, changes are even larger for Mexico and Canada than the US.

The equations with the absolute term of the difference in GDP per capita without identifying which country has higher income are also examined. However, the results are similar.

¹⁴ Our definition of measuring extensive and intensive margins follows Flam and Nordstrom (2011) and Hayakawa, et al. (2011). There are various definitions of extensive and intensive margins for the analysis, using finely disaggregated bilateral trade at the country level (not bilateral trade data at the firm level). For instance, Haddad, et al. (2010) decompose changes in total trade (the percentage change in the total value of trade) into these margins as follows: intensive margins are composed of effects due to changes in quantity and price, and extensive margins consist of an effect due to exiting products (exit effect) and an effect due to new products (entry effect). See also Hummels and Klenow (2005) and Helpman, *et al.* (2008) for the examples of other types of definitions. ¹⁵ Available from the t'

Available from http://comtrade.un.org/db/default.aspx.

 ¹⁶ Available from http://www.cepii.fr/anglaisgraph/bdd/distances.htm. See Mayer and Zignago (2011) for the details on CEPII's distances measures.
 ¹⁷ Available from <u>http://databank.worldbank.org/ddp/home.do</u>.
 ¹⁸ Another approach would be the extended technique of the Heckman two-step estimation to take 16

such a systematic sample selection into account; see, for instance, Helpman, et al. (2008).

No.	Author(s)	Title	Year	
2012.22	Mitsuyo ANDO and	Evolution of Machinery Production Networks:	Nov	
2013-32	Fukunari KIMURA	Linkage of North America with East Asia?	2013	
	Mitsuyo ANDO and Fukunari KIMURA	What are the Opportunities and Challenges for	Nov	
2013-31		ASEAN?	2013	
2012 20	Simon PEETMAN	Standards Harmonisation in ASEAN: Progress,	Nov	
2013-30		Challenges and Moving Beyond 2015	2013	
	Jonathan KOH and Andrea Feldman MOWERMAN	Towards a Truly Seamless Single Windows and	New	
2013-29		Trade Facilitation Regime in ASEAN Beyond	1NUV	
		2015	2015	
		Stimulating Innovation in ASEAN Institutional	Nov	
2013-28	Rajah RASIAH	Support, R&D Activity and Intelletual Property	1NUV	
		Rights	2015	
2012 27	Maria Monica WIHARDJA	Financial Integration Challenges in ASEAN	Nov	
2013-27		beyond 2015	2013	
	Tomohiro MACHIKITA and Yasushi UEKI	Who Disseminates Technology to Whom, How,	New	
2013-26		and Why: Evidence from Buyer-Seller Business	1NUV	
		Networks	2015	
2012 25	Fukunari KIMURA	Reconstructing the Concept of "Single Market a	Oct	
2013-23		Production Base" for ASEAN beyond 2015	2013	
	Olivier CADOT	Charles I'm in a NTEMA in A CE AND	0.4	
2013-24	Ernawati MUNADI Lili Yan ING	Streamining NTMS in ASEAN:	Oct	
		The way Forward	2013	
	Charles HARVIE,	Small and Medium Enterprises' Access to	0-4	
2013-23	Dionisius NARJOKO,	Finance: Evidence from Selected Asian	2012	
	Sothea OUM	Economies	2013	
2012 22	Alan Khao Lin TAN	Toward a Single Aviation Market in ASEAN:	Oct	
2013-22	Alan Khee-Jin TAN	Regulatory Reform and Industry Challenges	2013	
	Hisanobu SHISHIDO,	Moving MPAC Forward: Strengthening		
2012 21	Shintaro SUGIYAMA,	Public-Private Partnership, Improving Project	Oct	
2013-21	Fauziah ZEN	Portfolio and in Search of Practical Financing	2013	
		Schemes		

# **ERIA Discussion Paper Series**

No.	Author(s)	Title	Year
2013-20	Barry DESKER, Mely CABALLERO-ANTH ONY, Paul TENG	Thought/Issues Paper on ASEAN Food Security: Towards a more Comprehensive Framework	Oct 2013
2013-19	Toshihiro KUDO, Satoru KUMAGAI, So UMEZAKI	Making Myanmar the Star Growth Performer in ASEAN in the Next Decade: A Proposal of Five Growth Strategies	Sep 2013
2013-18	Ruperto MAJUCA	Managing Economic Shocks and Macroeconomic Coordination in an Integrated Region: ASEAN Beyond 2015	Sep 2013
2013-17	Cassy LEE and Yoshifumi FUKUNAGA	Competition Policy Challenges of Single Market and Production Base	Sep 2013
2013-16	Simon TAY	Growing an ASEAN Voice? : A Common Platform in Global and Regional Governance	Sep 2013
2013-15	Danilo C. ISRAEL and Roehlano M. BRIONES	Impacts of Natural Disasters on Agriculture, Food Security, and Natural Resources and Environment in the Philippines	Aug 2013
2013-14	Allen Yu-Hung LAI and Seck L. TAN	Impact of Disasters and Disaster Risk Management in Singapore: A Case Study of Singapore's Experience in Fighting the SARS Epidemic	Aug 2013
2013-13	Brent LAYTON	Impact of Natural Disasters on Production Networks and Urbanization in New Zealand	Aug 2013
2013-12	Mitsuyo ANDO	Impact of Recent Crises and Disasters on Regional Production/Distribution Networks and Trade in Japan	Aug 2013
2013-11	Le Dang TRUNG	Economic and Welfare Impacts of Disasters in East Asia and Policy Responses: The Case of Vietnam	Aug 2013
2013-10	Sann VATHANA, Sothea OUM, Ponhrith KAN, Colas CHERVIER	Impact of Disasters and Role of Social Protection in Natural Disaster Risk Management in Cambodia	Aug 2013
2013-09	Sommarat CHANTARAT, Krirk PANNANGPETCH, Nattapong PUTTANAPONG, Preesan RAKWATIN, and Thanasin	Index-Based Risk Financing and Development of Natural Disaster Insurance Programs in Developing Asian Countries	Aug 2013

No.	Author(s)	Title	Year	
	TANOMPONGPHANDH			
2012.00	Ikumo ISONO and Satoru	Long-run Economic Impacts of Thai Flooding:	July	
2013-08	KUMAGAI	Geographical Simulation Analysis	2013	
2012.07	Yoshifumi FUKUNAGA	Assessing the Progress of Services Liberalization in	May	
2013-07	and Hikaru ISHIDO	the ASEAN-China Free Trade Area (ACFTA)	2013	
	Ken ITAKURA, Yoshifumi		М	
2013-06	FUKUNAGA, and Ikumo	A CGE Study of Economic Impact of Accession of	May 2012	
	ISONO	Hong Kong to ASEAN-China Free Trade Agreement	2013	
2012.05	Misa OKABE and Shujiro		May	
2013-05	URATA	The Impact of AFTA on Intra-AFTA Trade	2013	
2012.04		How Far Will Hong Kong's Accession to ACFTA will	May	
2013-04	Konel SHIINO	Impact on Trade in Goods?	2013	
2012 02	Cassey LEE and Yoshifumi	ASEAN Regional Cooperation on Competition	Apr	
2013-03	FUKUNAGA	Policy	2013	
	Vashifumi EUKLINACA	Taking $ASEAN + 1$ ETAs towards the DCED.	Jan	
2013-02	and Huma ISONO	A Monning Study	2013	
	and Ikumo ISONO	A Mapping Study		
		Impact of Liberalization and Improved Connectivity	Ian	
2013-01	Ken ITAKURA	and Facilitation in ASEAN for the ASEAN Economic	2012	
		Community	2013	
2012 17	Sun XUEGONG, Guo	Market Entry Barriers for FDI and Private Investors:	Aug	
2012-17	LIYAN, Zeng ZHENG	Lessons from China's Electricity Market	2012	
2012 16		Electricity Market Integration: Global Trends and	Aug	
2012-10	Yanrul WU	Implications for the EAS Region	2012	
		Power Generation and Cross-border Grid Planning for	Aug	
2012-15		the Integrated ASEAN Electricity Market: A Dynamic	Aug	
	LI	Linear Programming Model	2012	
2012 14	Vangui WIL Vunnang SHI	Economic Development, Energy Market Integration and	Aug	
2012-14	Tainur w O, Aunpeng Shi	Energy Demand: Implications for East Asia	2012	
	Joshua AIZENMAN,	The Relationship between Structural Change and	Inly	
2012-13	Minsoo LEE, and	Inequality: A Conceptual Overview with Special	2012	
	Donghyun PARK	Reference to Developing Asia	2012	
2012 12	Hyun-Hoon LEE, Minsoo	Growth Policy and Inequality in Developing Asia:	July	
2012-12	LEE, and Donghyun PARK	Lessons from Korea	2012	

No.	Author(s)	Title	Year
2012-11	Cassey LEE	Knowledge Flows, Organization and Innovation:	June
		Firm-Level Evidence from Malaysia	2012
2012-10	Jacques MAIRESSE, Pierre MOHNEN, Yayun ZHAO, and Feng ZHEN	Globalization, Innovation and Productivity in Manufacturing Firms: A Study of Four Sectors of China	June 2012
2012-09	Ari KUNCORO	Globalization and Innovation in Indonesia: Evidence from Micro-Data on Medium and Large Manufacturing Establishments	June 2012
2012-08	Alfons PALANGKARAYA	The Link between Innovation and Export: Evidence from Australia's Small and Medium Enterprises	June 2012
2012-07	Chin Hee HAHN and	Direction of Causality in Innovation-Exporting Linkage:	June
	Chang-Gyun PARK	Evidence on Korean Manufacturing	2012
2012-06	Keiko ITO	Source of Learning-by-Exporting Effects: Does Exporting Promote Innovation?	June 2012
2012-05	Rafaelita M. ALDABA	Trade Reforms, Competition, and Innovation in the Philippines	June 2012
2012-04	Toshiyuki MATSUURA and Kazunobu HAYAKAWA	The Role of Trade Costs in FDI Strategy of Heterogeneous Firms: Evidence from Japanese Firm-level Data	June 2012
2012-03	Kazunobu HAYAKAWA, Fukunari KIMURA, and Hyun-Hoon LEE	How Does Country Risk Matter for Foreign Direct Investment?	Feb 2012
2012-02	Ikumo ISONO, Satoru KUMAGAI, Fukunari KIMURA	Agglomeration and Dispersion in China and ASEAN: A Geographical Simulation Analysis	Jan 2012
2012-01	Mitsuyo ANDO and Fukunari KIMURA	How Did the Japanese Exports Respond to Two Crises in the International Production Network?: The Global Financial Crisis and the East Japan Earthquake	Jan 2012
2011-10	Tomohiro MACHIKITA and Yasushi UEKI	Interactive Learning-driven Innovation in Upstream-Downstream Relations: Evidence from Mutual Exchanges of Engineers in Developing Economies	Dec 2011
2011-09	Joseph D. ALBA, Wai-Mun CHIA, and Donghyun	Foreign Output Shocks and Monetary Policy Regimes in Small Open Economies: A DSGE Evaluation of East	Dec 2011

No.	Author(s)	Title	Year
	PARK	Asia	
2011-08	Tomohiro MACHIKITA and Yasushi UEKI	Impacts of Incoming Knowledge on Product Innovation: Econometric Case Studies of Technology Transfer of Auto-related Industries in Developing Economies	Nov 2011
2011-07	Yanrui WU	Gas Market Integration: Global Trends and Implications for the EAS Region	Nov 2011
2011-06	Philip Andrews-SPEED	Energy Market Integration in East Asia: A Regional Public Goods Approach	Nov 2011
2011-05	Yu SHENG, Xunpeng SHI	Energy Market Integration and Economic Convergence: Implications for East Asia	Oct 2011
2011-04	Sang-Hyop LEE, Andrew MASON, and Donghyun PARK	Why Does Population Aging Matter So Much for Asia? Population Aging, Economic Security and Economic Growth in Asia	Aug 2011
2011-03	Xunpeng SHI, Shinichi GOTO	Harmonizing Biodiesel Fuel Standards in East Asia: Current Status, Challenges and the Way Forward	May 2011
2011-02	Hikari ISHIDO	Liberalization of Trade in Services under ASEAN+n : A Mapping Exercise	May 2011
2011-01	Kuo-I CHANG, Kazunobu HAYAKAWA Toshiyuki MATSUURA	Location Choice of Multinational Enterprises in China: Comparison between Japan and Taiwan	Mar 2011
2010-11	Charles HARVIE, Dionisius NARJOKO, Sothea OUM	Firm Characteristic Determinants of SME Participation in Production Networks	Oct 2010
2010-10	Mitsuyo ANDO	Machinery Trade in East Asia, and the Global Financial Crisis	Oct 2010
2010-09	Fukunari KIMURA Ayako OBASHI	International Production Networks in Machinery Industries: Structure and Its Evolution	Sep 2010
2010-08	Tomohiro MACHIKITA, Shoichi MIYAHARA, Masatsugu TSUJI, and Yasushi UEKI	Detecting Effective Knowledge Sources in Product Innovation: Evidence from Local Firms and MNCs/JVs in Southeast Asia	Aug 2010

No.	Author(s)	Title	Year
2010-07	Tomohiro MACHIKITA, Masatsugu TSUJI, and Yasushi UEKI	How ICTs Raise Manufacturing Performance: Firm-level Evidence in Southeast Asia	Aug 2010
2010-06	Xunpeng SHI	Carbon Footprint Labeling Activities in the East Asia Summit Region: Spillover Effects to Less Developed Countries	July 2010
2010-05	Kazunobu HAYAKAWA, Fukunari KIMURA, and Tomohiro MACHIKITA	Firm-level Analysis of Globalization: A Survey of the Eight Literatures	Mar 2010
2010-04	Tomohiro MACHIKITA and Yasushi UEKI	The Impacts of Face-to-face and Frequent Interactions on Innovation: Upstream-Downstream Relations	Feb 2010
2010-03	Tomohiro MACHIKITA and Yasushi UEKI	Innovation in Linked and Non-linked Firms: Effects of Variety of Linkages in East Asia	Feb 2010
2010-02	Tomohiro MACHIKITA and Yasushi UEKI	Search-theoretic Approach to Securing New Suppliers: Impacts of Geographic Proximity for Importer and Non-importer	Feb 2010
2010-01	Tomohiro MACHIKITA and Yasushi UEKI	Spatial Architecture of the Production Networks in Southeast Asia: Empirical Evidence from Firm-level Data	Feb 2010
2009-23	Dionisius NARJOKO	Foreign Presence Spillovers and Firms' Export Response: Evidence from the Indonesian Manufacturing	Nov 2009
2009-22	Kazunobu HAYAKAWA, Daisuke HIRATSUKA, Kohei SHIINO, and Seiya SUKEGAWA	Who Uses Free Trade Agreements?	Nov 2009
2009-21	Ayako OBASHI	Resiliency of Production Networks in Asia: Evidence from the Asian Crisis	Oct 2009
2009-20	Mitsuyo ANDO and Fukunari KIMURA	Fragmentation in East Asia: Further Evidence	Oct 2009
2009-19	Xunpeng SHI	The Prospects for Coal: Global Experience and Implications for Energy Policy	Sept 2009

No.	Author(s)	Title	Year
2009-18		Income Distribution and Poverty in a CGE	Jun
	Sothea OUM	Framework: A Proposed Methodology	2009
	Erlinda M. MEDALLA	ASEAN Rules of Origin: Lessons and	Jun
2009-17	and Jenny BALBOA	Recommendations for the Best Practice	2009
2009-16	Masami ISHIDA	Special Economic Zones and Economic Corridors	Jun 2009
2009-15	Toshihiro KUDO	Border Area Development in the GMS: Turning the Periphery into the Center of Growth	May 2009
2000 14	Claire HOLLWEG and	Measuring Regulatory Restrictions in Logistics Services	
2009-14	Marn-Heong WONG		
2009-13	Loreli C. De DIOS	Business View on Trade Facilitation	Apr 2009
2009-12	Patricia SOURDIN and Richard POMFRET	Monitoring Trade Costs in Southeast Asia	Apr 2009
2000 11	Philippa DEE and	Barriers to Trade in Health and Financial Services in	Apr
2009-11	Huong DINH	ASEAN	2009
2009-10	Sayuri SHIRAI	The Impact of the US Subprime Mortgage Crisis on the World and East Asia: Through Analyses of Cross-border Capital Movements	Apr 2009
2009-09	Mitsuyo ANDO and Akie IRIYAMA	International Production Networks and Export/Import Responsiveness to Exchange Rates: The Case of Japanese Manufacturing Firms	Mar 2009
2000 08	Archanun	Vertical and Horizontal FDI Technology	Mar
2009-08	KOHPAIBOON	Spillovers: Evidence from Thai Manufacturing	2009
2009-07	Kazunobu HAYAKAWA, Fukunari KIMURA, and Toshiyuki MATSUURA	Gains from Fragmentation at the Firm Level: Evidence from Japanese Multinationals in East Asia	Mar 2009
2009-06		Plant Entry in a More	Mar 2009
	Dionisius A. NARJOKO	LiberalisedIndustrialisationProcess: An Experience of Indonesian Manufacturing during the 1990s	
	Kazunobu HAYAKAWA.	0	
2009-05	Fukunari KIMURA, and Tomohiro MACHIKITA	Firm-level Analysis of Globalization: A Survey	Mar 2009

No.	Author(s)	Title	Year
2000.04	Chin Hee HAHN and	Learning-by-exporting in Korean Manufacturing:	Mar
2009-04	Chang-Gyun PARK	A Plant-level Analysis	2009
2000.02	Ayako OBASHI	Stability of Production Networks in East Asia:	Mar
2009-05		Duration and Survival of Trade	2009
	Fukunari KIMURA	The Spatial Structure of Production/Distribution	Mon
2009-02		Networks and Its Implication for Technology	2000
		Transfers and Spillovers	2009
2009-01	Fukunari KIMURA and	International Production Networks: Comparison	Jan
	Ayako OBASHI	between China and ASEAN	2009
2000.02	Kazunobu HAYAKAWA	The Effect of Exchange Rate Volatility on	Dec
2008-03	and Fukunari KIMURA	International Trade in East Asia	2008
2008-02	Satoru KUMAGAI, Toshitaka GOKAN, Ikumo ISONO, and Souknilanh KEOLA	Predicting Long-Term Effects of Infrastructure Development Projects in Continental South East Asia: IDE Geographical Simulation Model	Dec 2008
2008-01	Kazunobu HAYAKAWA, Fukunari KIMURA, and Tomohiro MACHIKITA	Firm-level Analysis of Globalization: A Survey	Dec 2008