List of Figures

Figure 1-1 EAS–ERIA Biodiesel Fuel Trade Handbook: 2010	1
Figure 1-2 Biofuel Road Map in Five ASEAN Countries	2
Figure1-3 Composition of Each Research Theme	3
Figure 2.1.1-1 Share of Final Energy Consumption in Thailand by Sector, 2017	4
Figure 2.1.1-2 Energy Balance of Thailand, 2013–2017	5
Figure 2.1.1-3 Energy Balance of Thailand, 2016	7
Figure 2.1.1-4 Comparison of Yearly Local Production and Consumption of Petroleum Products in Thailand, 2012–2016	8
Figure 2.1.1-5 Energy Consumption of Various Fuels in the Transportation Sector in Thailand, 2012–2016	9
Figure 2.1.1-6 Bioethanol Feedstock in Thailand	10
Figure 2.1.1-7 Bioethanol Production with Blending in Thailand	11
Figure 2.1.1-8 Biodiesel Feedstock in Thailand	12
Figure 2.1.1-9 Forecast of Transportation Fuel Demand in Energy Efficiency Plan (2015–2036)	14
Figure 2.1.2-1 Energy Projection up to 2025 and 2025 according to BPPT Energy Outlook	27
Figure 2.1.3-1. Total Primary Energy Mix in the Philippines by Fuel Shares, 2015–2016	31
Figure 2.1.3-2 Production and Demand Mix in the Philippines in Fiscal Year 2016	36
Figure 2.1.3-3 2017–2040 Road Map of Biofuels in the Philippines	42
Figure 2.1.3-4 Total Final Energy Consumption in the Philippines by Sector, 2000–2040	43
Figure 2.1.3-5 Total Final Energy Consumption in the Philippines by Sectoral Share (Actual 2000–2016, Clean Energy Scenario 2017–2040)	44
Figure 2.1.3-6 Final Energy Consumption in the Philippines by Fuel, 2000–2040	45
Figure 2.1.3-7. Transport Energy Demand in the Philippines by Fuel, 2000–2040	46
Figure 2.1.4-1 Gross Domestic Product Growth of Viet Nam, 2012–2018	51
Figure 2.1.4-2 Total Primary Energy Supply of Viet Nam, 2005 vs 2013	52
Figure 2.1.4-3 Final Energy Demand in Viet Nam by Sector, 2005–2050	54
Figure 2.1.4-4 Final Energy Demand in Viet Nam by Fuel, 2010–2050	55
Figure 2.1.4-5 Share of Final Consumption in Viet Nam by Economic Sector, 2010	58
Figure 2.1.4-6 Road Transport Diesel and Gasoline Consumption in Viet Nam, 1980–2010	58
Figure 2.1.4-7 Greenhouse Gas Emissions and Mitigation Potential in Viet Nam	59
Figure 2.1.5-1 Variation of GDP, Total Primary Energy Supply, and Final Energy Consumption in Malaysia, 1990–2015	63
Figure 2.1.5-2 Sales of New Vehicles in the Malaysian Market, 2015–2017	64
Figure 2.1.5-3 History and Projections of Fuel Use in Malaysia	65
Figure 2.1.5-4 Production of Biodiesel in Malaysia	66

Figure 2.1.5-5 Consumption of Biodiesel in Malaysia	67
Figure 2.1.5-6 Strategic Dimensions and Implementation of the National Biofuel Policy in Malaysia	69
Figure 2.2.2-1 Calculation Flow of Energy Consumption by Energy Mix Model	71
Figure 2.2.3-1. Total Energy Consumption of Road Transportation in Thailand	72
Figure 2.2.3-2 Fuel Consumption of Business-as-Usual Case in Thailand	73
Figure 2.2.3-3 Fuel Consumption of Biofuels Case in Thailand	74
Figure 2.2.3-4 Evaluation of Oil Reduction Potential Based on the Energy Efficiency Plan Requirement in Thailand	75
Figure 2.2.3-5 Total Energy Consumption of Road Transportation in Indonesia	77
Figure 2.2.3-6. Fuel Consumption of Business-as-Usual Case in Indonesia	77
Figure 2.2.3-7 Fuel Consumption of Biofuels Case in Indonesia	78
Figure 2.2.3-8 Evaluation of Oil Reduction Potential Based on the KEN Requirement in Indonesia	79
Figure 2.2.3-9 Total Energy Consumption of Road Transportation in the Philippines	81
Figure 2.2.3-10 Fuel Consumption of Business-as-Usual Case in the Philippines	81
Figure 2.2.3-11 Fuel Consumption of Biofuels Case in the Philippines	82
Figure 2.2.3-12 Evaluation of Oil Reduction Potential Based on the PEP Requirement in the Philippines	83
Figure 2.2.3-13 Total Energy Consumption of Road Transportation in Malaysia	85
Figure 2.2.3-14 Fuel Consumption of Business-as-Usual Case in Malaysia	85
Figure 2.2.3-15 Fuel Consumption of Biofuels Case in Malaysia	86
Figure 2.2.3-16 Evaluation of Oil Reduction Potential Based on Our Tentative Target Setting of 35% Reduction	87
Figure 2.2.3-17 Total Energy Consumption of Road Transportation in Viet Nam	88
Figure 2.2.3-18 Fuel Consumption of Business-as-Usual Case in Viet Nam	89
Figure 2.2.3-19 Fuel Consumption of Biofuels Case in Viet Nam	89
Figure 2.2.3-20 Evaluation of Oil Reduction Potential Based on Our Tentative Target Setting of 20% Reduction	90
Figure 2.3.1-1 Transportation Energy Share by Fuel Type in the Five Countries	93
Figure 2.3.1-2 Multinational Cooperation of Biofuel Supply in ASEAN	94
Figure 2.3.2-1 Total Cost Change and Amount of Oil Reduced during 2015–2030	96
Figure 2.3.2-2 Cost-effectiveness of Each Oil Reduction Measure	97
Figure 2.3.2-3 Oil Reduction Potential of the Alternative Case for Thailand	98
Figure 2.3.2-4 Oil Reduction Potential of the Alternative Case for Indonesia	100
Figure 2.3.2-5 Oil Reduction Potential of the Revised Target Case for the Philippines	101
Figure 2.3.2-6 Oil Reduction Potential of the Alternative Case for Malaysia	103

Figure 2.3.2-7 Oil Reduction Potential of the Alternative Case for Viet Nam	104
Figure 2.3.3-1 Proposal of the Biofuel Supplementation Scheme within the ASEAN Region: Biofuels Balancing Concept in ASEAN	111
Figure 3.2-1 Biofuel Classification	114
Figure 3.2-2. Environmental, Social, and Economic Aspects of Biofuel and	115
Bioenergy Production Figure 3.2-3. Greenhouse Gas Savings of Diesel-Substituted Biofuel Production	115
Figure 3.2-4. Biomass Potential Status in Major ASEAN Member States	116
Figure 3.3-1. Production of Hydrocarbon-Type Next-Generation Biofuels	123
Figure 3.3-2. Gas Chromatograms of Bio-oils and Final Products Made by Flash Pyrolysis and Upgrading Reaction	124
Figure 3.3-3. Systematic Quantitative Analysis of Biomass Components	125
Figure 3.3-4. Alternative Gasoline Production from Waste Biomass	126
Figure 3.3-5. Combined Ethanol and Alternative Gasoline Production from Waste Biomass	127
Figure 3.3-6. Gas Chromatograms of Bio-oils Obtained from Willow and Its Saccharised Residue	127
Figure 3.3-7. Alternative Diesel Production from Waste Biomass	128
Figure 3.3-8. Hydrotreating of Waste Cooking Oil or Trap Grease/Straight- Run Diesel Mixture	129
Figure 3.4-1. Feasibility Study of Biodiesel Production from Palm Oil	131
(FAME, H-FAME, and HVO) and Woody Biomass (FT-Diesel) Figure 3.4-2 Fuel Production Scheme from Empty Fruit Bunch and Bio-oil Production Cost	132
Figure 3.4-3. Supply Chain Flow Diagram of Fuel Production via Pyrolysis	133
and Upgrading Figure 3.4-4. Total Production Cost and Benefit of Fuel Production	133
Figure 3.4-5. Simulation Result of Energy Input for Producing Biofuel	136
Figure 3.4-6. Cost Contribution by Each Process	136
Figure 3.4-7. Distribution of Total Direct Capital Cost	137
Figure 3.4-8. Cost Sensitivity Analysis of Jet Fuel Production from Jatropha	137
Figure 3.4-9. Economy of Scale Effects for Biomass-to-Liquids Production from Poplar	138
Figure 3.4-10. Feasibility Study of Alternative Diesel Production	139
Figure 3.4-11. Unit Cost as a Function of Biofuel Production for Various Delivery Rate Cost	140
Figure 3.4-12. Synfuel Production Costs for Different Gasification Capacity	140
Figure 3.4-13. Unit Cost as a Function of Biofuel Production for Various Equivalent Yields	141
Figure 3.4-14. Annual Global Warming Potential Impact and Total Cost Relative Values for the 56 Scenarios Compared to the Reference Scenario	142
Figure 3.5-1. Aviation Fuel Demand Outlook in ASEAN-4 Countries	142

Figure 3.5-2. Greenhouse Gas Reduction in the Aviation Sector	143
Figure 3.5-3. Pathways for Alternative Aviation Fuel Production	144
Figure 3.5-4. Effect of Catalyst Species on Product Distribution in Hydrotreating of Hexadecane	145
Figure 3.5-5. Gas Chromatograms of Petroleum Kerosene and Gas-to- Liquids Kerosene	146
Figure 4.1-1. Energy Pathway	151
Figure 4.1.2. Energy Consumption and Gross Domestic Product Trend in Japan	152
Figure 4.1.3. CO2 Emissions from the Transportation Sector and the CO2 Reduction Target in Japan	153
Figure 4.2.1. Trend of Methanol Production	154
Figure 4.2.2. Production and Forecast of Methanol	154
Figure 4.3.1. Biomethanol Test Plant in Kyoto, Japan	157
Figure 4.3.2. BioMCN Biomethanol Plant	158
Figure 4.3.3. Overview of BioMCN Site	159
Figure 4.3.4. Enerkem Alberta Waste-to-Biofuel Plant	160
Figure 4.3.5. Maverick Oasis Modular Methane-to-Methanol Production Plant	161
Figure 4.3.6. Biomethanol in Sweden, BioMCN Biomethanol Plant	161
Figure 4.3.7. Södra Biomethanol Plant in Sweden	162
Figure 4.3.8. Bio-dimethyl Ether Project in Sweden	163
Figure 4.3.9. Fraunhofer Project: Bio-M Production of Biomethanol from Biogenic CO2 Sources	164
Figure 4.4.1. Production and Transportation of Liquid Hydrogen	166
Figure 4.4.2. Properties and Utilisation of Methylcyclohexane	167
Figure 4.4.3. Properties and Utilisation of Ammonia	167
Figure 4.4.4. Properties and Utilisation of Methanol	168
Figure 4.5.1. Dimethyl Ether Vehicles around the World	169

List of Tables

Table 2.1.1-1 Official Refinery Capacity in Thailand with Actual Production and Consumption	8
Table 2.1.1-2. 11 Measures for Energy Efficiency Planning in the Transportation Sector in Thailand	15
Table 2.1.2-1 Electricity Purchase Tariff from Renewable Energy Plants (Government of Indonesia, 2017)	18
Table 2.1.2-2 Energy Indicators of Indonesia	19
Table 2.1.2-3 Biofuel Mandatory Regulation in Indonesia (%)	24
Table 2.1.3-1 Natural Gas Production and Consumption in the Philippines	39
Table 2.1.3-2 List of Accredited Bioethanol Producers and Registered Bioethanol in the Philippines	40
Table 2.1.3-3 List of Accredited Biodiesel Producers and Registered Biodiesel Projects in the Philippines	41
Table 2.1.3-4 Biodiesel and Bioethanol Production and Sales in the Philippines, 2016-2017	41
Table 2.1.3-5 Biodiesel Demand Outlook of the Philippines, 2018–2040	46
Table 2.1.3-6 Bioethanol Demand Outlook of the Philippines, 2018–2040	47
Table 2.1.4-1 Energy Consumption in Viet Nam by Type	53
Table 2.1.4-2 Installed Power Capacity and Generation in Viet Nam, 2013	53
Table 2.1.4-3 Assumptions on Power Generation in Viet Nam According to the Business-as-Usual Scenario	55
Table 2.1.4-4. Structure of Power Sources in Total Electricity Production in Viet Nam	57
Table 2.1.4-5 Greenhouse Gas Inventory in 2010 and Projections for 2020 and 2030 for the Energy Sector in Viet Nam	60
Table 2.1.5-1. Official Refineries in Malaysia and Their Capacity	64
Table 2.1.5-2. Biodiesel Plants in Malaysia	66
Table 2.2.1-1. Economic, Energy, and Automotive Market Information of the ASEAN Member States	71
Table 2.3.2-1. Conditions for Total Cost Calculation, 2015–2030	95
Table 2.3.2-2. Scenarios for Total Cost Calculation, 2015–2030, and Their Condition Setting for the Energy Mix Model Simulation	95
Table 2.3.2-3. Oil Reduction Cost Equivalents	97
Table 2.3.2-4. Proposal of Alternative Combination of Oil Reduction Measures (Alternative Case) and Cost Comparison with Existing Policy (Base Case)	98
Table 2.3.2-5. Proposal of Alternative Combination of Oil Reduction Measures (Alternative Case) and Cost Comparison with Existing Policy (Base Case)	99
Table 2.3.2-6. Proposal of Alternative Combination of Oil Reduction Measures (Revised Target Case) and Cost Comparison with Existing Policy (Base Case)	101
Table 2.3.2-7. Proposal of Alternative Combination of Oil Reduction Measures (Alternative Case) and Cost Comparison with Existing Policy (Base Case)	102

Table 2.3.2-8. Proposal of Alternative Combination of Oil Reduction Measures (Alternative Case) and Cost Comparison with Existing Policy (Base Case)	
Table 2.3.3-1. Required Amount of Ethanol and Biodiesel in Each Country by 2030 for the Alternative Case	105
Table 2.3.3-2. Ethanol and Biodiesel Supply Potentials up to 2030 in Thailand	106
Table 2.3.3-3. Ethanol and Biodiesel Supply Potentials up to 2030 in Indonesia	106
Table 2.3.3-4. Ethanol and Biodiesel Supply Potentials up to 2030 in the Philippines	107
Table 2.3.3-5. Ethanol and Biodiesel Supply Potentials up to 2030 in Malaysia	107
Table 2.3.3-6. Ethanol and Biodiesel Supply Potentials up to 2030 in Viet Nam	108
Table 2.3.3-7. Estimated Domestic Supply Potential of Ethanol and Biodiesel in Each Country by 2030	109
Table 2.3.3-8. Biofuel Supply/Demand Status Summary for the Five Countries by 2030	109
Table 3.31 Yield, Oil Content, and Acid Value of Various Non-edible Oils	118
Table 3.3-2. Fatty Acid Composition of Various Non-edible Oils	120
Table 3.3-3. Properties of Fatty Acid Methyl Ester Produced from Various Non-edible Oils	121
Table 3.3-4. EAS–ERIA Biodiesel Fuel standard and Improvement of Oxidation Stability, Monoglyceride Content, and Phosphorus Content	122
Table 3.3-5 Oxidation Stability of Various Biodiesels and Partial Hydrogenated Biodiesels Measured by Rancimat (EN14112)	122
Table 3.3-6. Properties of Various Alternative Diesel Fuel (HVO, FT-diesel)	130
Table 3.4-1 Production Costs of Alternative Jet Fuel from Various Pathways	134
Table 3.4-2. Cost Effect of Fuel Production Using FT Synthesis with/without Methanol to Gas Process	135
Table 4.3.1. Overview of Existing or Planned Facilities for Biomethanol Production	156
Table 4.3.2. Biomethanol Cost Estimation	165
Table 4.4.1. Physical Characteristics of Various Energy Carriers	165