ERIA Discussion Paper Series

Direction of Causality in Innovation-Exporting Linkage: Evidence on Korean Manufacturing

Chin Hee HAHN* *Kyungwon University*

Chang-Gyun PARK[†]
Chung-Ang University

June 2012

Abstract: This paper examines various possible bi-directional causal relationships among exporting, innovation, and productivity utilizing plant-level data on Korean manufacturing. Based on both propensity score matching technique and three-variable panel VAR estimation, we find a significantly positive effect of exporting on new product introduction. The effect for the other direction of causality is estimated to be positive but not significant. Panel VAR estimation results suggest that plant productivity has a significantly positive effect on both exporting and new product introduction.

Key Words: Exporting, Innovation, Productivity, Propensity score matching, Panel VAR

JEL Classification: F14, O12, O19

*Associate Professor, Kyungwon University. Email: chhahn@kyungwon.ac.kr

† Associate Professor, Chung-Ang university. Email: cp19@cau.ac.kr

1. Background and Objective

One of the most robust empirical findings from recent studies on firm' exporting behavior is that exporting firms are more productive than those firms that do not export. A large number of subsequent studies have documented that the productivity premium of exporters, relative to non-exporters, is at least a consequence of self-selection of more productive firms into exporting activity. The evidence in favor of the other direction of causality, i.e., learning-by-exporting, is still considered to be inconclusive. As a reflection of these developments, many theoretical models of heterogeneous firms have featured some form of self-selection mechanism, and analyzed the effects of liberalized trade (e.g., Melitz, 2003; Bernard *et al.*, 2007). According to these models, trade liberalization can raise aggregate productivity by inducing resource reallocation across firms, i.e, the contraction and exit of low-productivity firms and the expansion and entry into export markets of high-productivity firms, even if there is no change in firm-level productivity.

Some authors have noted, however, that one story that is missing from the above productivity-export nexus is that firms may make investments in R&D or undertake innovation activities, which might be systematically related to productivity and to export-market participation. Indeed, in most innovation-based endogenous growth models, firms' innovation activity drives productivity growth as well as the introduction of new products or varieties (e.g., Romer, 1990; Grossman and Helpman, 1991). In an open economy setting, these innovation outcomes affect firms' export market participation behavior. Conversely, exporting can affect the decision to undertake innovation activity. If new knowledge gained through

exporting, or larger market size associated with exporting opportunity, raises the profitability of successful innovation, exporting can promote innovation. Given the above potential linkage between innovation and exporting, examining this relationship empirically is likely to give us additional insights into important issues, such as a firm's export-market participation behavior, dynamic effects of trade or trade liberalization, and determinants of innovation. More importantly, it will also help to clarify sources of heterogeneity of firms in productivity, which is assumed to be exogenous in recent heterogeneous-firm- trade models.

This paper also aims to examine empirically a possible bi-directional causal relationship between exporting and innovation, combining plant-level panel data and plant-product matched data in Korean manufacturing. We employ two methodologies: propensity score matching and panel vector auto regression (PVAR) methodologies. The propensity score matching technique in this paper is similar in spirit to the one used by Damijan et al. (2008). Here, we examine whether previous exporting (innovation) experience affects whether a plant innovates (exports) or not, controlling the possible selection bias arising from the endogenous-export (innovation) participation. We employ PVAR methodology developed by Holtz-Eakin et. al. (1988) and examine the dynamic relationship that exists among three variables at plant level: exporting, innovation, and plant productivity. In this paper, we measure several innovation outcome variables. This paper's focus on innovation outcome is in line with most previous studies on this issue, such as Cassiman and Martinez-Ros (2007), Becker and Egger (2007), Damijan et al. (2008), and Hahn Unlike most previous studies, however, we follow Hahn (2010)² to (2010).

¹ Theoretical background behind innovation-export linkage will be discussed below in some more detail

Hahn (2010) shows that exporting plants in Korean manufacturing sector are more likely to

distinguish between two types of product innovation: product innovations that are new to the plant and those that are new to the Korean economy (i.e., products that are domestically produced for the first time). The use of plant-product matched data allows us to measure these two types of product innovations separately, because we can tell whether a new product to the plant is also a new product to the aggregate economy or not.³ Our conjecture is that, in Korea's context, products that are new to the aggregate economy are likely to capture product-cycle phenomenon or international-knowledge spillovers. By contrast, products that are new only to the plant are likely to reflect imitation by domestic competitors or domestic-knowledge diffusion. Our expectation is that the former is more clearly related to exporting.

This study is similar in spirit to Damijan et al. (2008) in that both studies examine the bi-directional causal relationship between innovation and exporting. However, this study differs from Damijan, et al. (2008) or most previous related studies in at least two aspects. Firstly, this study explicitly distinguishes between new products to the plants and new products to the aggregate economy, utilizing plant-product matched data. This distinction could shed light on the possibly different roles of those two types of innovation in exporting, and vice versa. Secondly, in contrast to most previous studies, this study utilizes both time-series and cross-sectional variations in the sample in order to test the possibility of bidirectional causality between innovation activity and export-market participation.

As mentioned above, this study is expected to give us additional insights into important issues, such as a firm's export market participation behavior, dynamic

introduce new products from the viewpoint of the aggregate economy, utilizing propensity score matching technique.

By contrast, innovation survey data on product innovation, which are typically used by similar studies, are based on the question whether a certain enterprise introduced products that were new to the firm during the past period.

effects of trade or trade liberalization, and determinants of innovation. Furthermore, it will also help to clarify sources of heterogeneity of firms in productivity, which is assumed to be exogenous in recent heterogeneous firm-trade models. Adequate understanding these issues are necessary to formulate appropriate trade liberalization strategies, as well as appropriate innovation policies in a globalized environment. In particular, the existence of bi-directional causal relationship might suggest not only respective roles of policies to increase the number of exporters and policies to increase the number of innovators, but also a possible complementary relationship between those policies.

This paper is organized as follows. In the next section, related studies are briefly reviewed. Section 3 provides a description of the data, our measures of new products, and some preliminary analysis. Section 4 discusses empirical strategy. Section 5 discusses main results. Section 6 provides some robustness checks on our main results. The Final section concludes.

2. Related Literature

2.1. Empirical Literature

This study is directly related to the growing empirical literature examining at least some of the linkages among exporting, innovation, and productivity. There are studies that examine the effect of innovation on exporting: Bernard and Jensen (1999) for U.S. firms, Becker and Egger (2007) for German firms, Cassiman and Martinez-Ros (2007) for Spanish firms, Roper and Love (2002) for the U.K. and

German plants, and Ebling and Janz (1999) for German firms.⁴ These studies all found a strong positive effect of innovation on exporting. While these studies tend to treat firms' innovation as a exogenous process, ⁵ Lachenmaier and Wößmann (2006) apply instrumental-variable procedures to account for the potential endogeneity of innovations. They find that innovations increase firm-level exports, and show that exogenous treatment of innovation leads to a downward bias in estimates of the impact of innovations on firm exports. There are also several studies that examine the other direction of causality: from exporting to innovation. Salomon and Shaver (2005) found that exporting promotes innovation in Spanish manufacturing firms, using product innovation counts and patent applications. Hahn (2010) shows that there are strong positive correlations between the exporting status of plants and various measures of product innovation in Korean manufacturing, and also finds some evidence indicating that exporting promotes new product introduction and increases the product scope (number of products produced) of exporting plants. It was only recently that authors began to examine the possible bi-directional causality between exporting and innovation Damijan et al. (2008) used a propensity score matching technique and examined the bi-directional causal relationship between innovation and exporting for Slovenian firms, and found that exporting leads to process innovations, while they did not find any evidence for the hypothesis that either product or process innovations increase the probability of becoming an exporter. While the above studies rely on reduced-form approach, Aw et al. (2009) estimated a dynamic structural model of a producer's decision to invest in R&D and

_

⁴ Cassiman and Golovko (2007) finds that, for Spanish manufacturing firms, firm innovation status is important in explaining the positive export-productivity nexus documented in previous studies.

⁵ Cassiman and Martinez-Ros (2007) treat innovation as predetermined variable and use lagged innovation, instead of contemporary innovation, in the export regressions.

participate in the export market, using plant-level data on the Taiwanese electronics industry. They found that self-selection of high-productivity plants mainly drives the participation in both activities, and also that both R&D and exporting have a positive effect on a plant's future productivity, reinforcing the selection effect. This study is also related to the already large amount of literature examining the productivity-export nexus, which we do not review here.⁶ As mentioned above, however, these studies do not consider the role of innovation explicitly.

This study is also related to the growing empirical literature that assesses the effect of trade or trade liberalization on domestic product variety. There are macroeconomic theoretical studies that suggest that trade may contribute to the expansion of domestic varieties and growth, in addition to static efficiency gains (Romer 1990, Grossman and Helpman 1991a, Ch. 9). In these models, trade expands the set of available input varieties, which reduces the R&D cost of creating new domestic varieties. Based on the implications of these endogenous-growth models, as well as more recent theories of heterogenous-firm theories of trade, such as Melitz (2003), Bernard *et al.* (2006), Goldberg *et al.* (2008). All examined empirically whether increased imported variety induced by trade liberalization has generated "domestic-variety-creation" effect. They find evidence that the increase in imported variety following trade reform in India in the early 1990s contributed to the expansion of domestic product variety. Bernard *et al.* (2009) examined product switching behavior of multi-product firms using a firm-product data for the U.S., and

_

 $^{^6}$ For a survey of this literature, see Greenaway and Kneller (2007). See also Hahn and Park (2008) and the cited studies for more recent studies.

In these models, growth is viewed as a process of continuous expansion of domestic varieties. Stokey (1988) views growth as a continuous process of creating new products and dropping of old products and constructs an endogenous growth model with learning-by-doing that exhibits these features. Some implications from these theories have been empirically tested by Feenstra *et al.* (1999). Using the data of Korea and Taiwan, they showed that changes in *domestic product variety* have a positive and significant effect on total factor productivity.

showed that multi-product firms are more likely to add or drop a product and export. However, neither Goldberg *et al.* (2008) nor Bernard *et al.* (2009) explicitly analyzed the introduction of products that are *new from the view point of the aggregate economy*; they focused on the product-scope decision of firms from the view point of individual firms. For a follower country, such as Korea, one of the most important features of her catch-up growth process is likely to be the introduction of new products from the viewpoint of the aggregate economy: products that came to be produced by domestic firms for the first time. In this regard, examining whether and how the first-time domestic production (or new product introduction) is related to exporting and productivity in Korea's context might be particularly interesting.

2.2. Theoretical Literature

Various theoretical studies suggest that a causal relationship between innovation and exporting is likely to be bi-directional, although the exact mechanism underlying such a relationship might vary somewhat across studies. There two strands of literature which provide a broad theoretical framework behind this study. Firstly, there are open economy endogenous-growth theories, such as Grossman and Helpman (1991b). In their model, the quality competition between Northern innovators and Southern imitators give rise to continual introduction of higher-quality products and, hence, sustained growth for both North and South. One implication of their model is that the causal relationship between innovation and exporting is bi-directional. In their model, firms' innovation (or imitation) activity introduces higher quality products, which then leads to subsequent exporting. So, the causation runs from innovation to exporting. Meanwhile, the larger market size associated with exporting as well as enhanced competition associated with North-

South trade strengthens the incentive to innovate, which implies the causation from exporting to innovation.⁸

Secondly, more recent heterogeneous-firm theories of trade and innovation, such as Constantini and Melitz (2008) and Aw et al. (2009), also suggest a bi-directional causal relationship between innovation and exporting. Roughly speaking, these theoretical models could be viewed as a combination of the static heterogeneousfirm-trade models, such as Melitz (2003), and the dynamic innovation-based endogenous-growth theories. Specifically, these models could be viewed as efforts to clarify the sources of firm heterogeneity by endogenizing firm-level productivity in heterogeneous-firm-trade models, which is typically assumed to be exogenously determined in those models. Furthermore, unlike the macroeconomic endogenousgrowth theories, these theories have clarified the role of firm-level productivity in the innovation-exporting nexus. The role of firm-level productivity can be explained as follows. To begin with, these models view both innovation and exporting as investment activities requiring sunk-entry cost, which generates the feature of productivity-based self-selection into both activities. In addition, these models allow for the possibility that innovation and/or exporting affects firm productivity, which subsequently reinforces the productivity-based self-selection into exporting or innovation. So, the bi-directional relationship between innovation and exporting in

-

⁸ Grossman and Helpman (1991b) could be viewed as a formalization as well as an extension of an early study Vernon (1966), which is known as "product cycle" theory. According to Vernon (1966), most new goods are developed in the industrialized North, produced there, and exported to South. As the products become standardized, the Northern innovator establishes an offshore production facility via foreign direct investment, or it might license the technology to a local producer in the South, where wage rates are lower. As production location moves from North to South, the direction of trade flow also reverses. In contrast to Vernon (1966), Grossman and Helpman (1991b) focused on immitation by arms-length competitors in the South as a mechanism of international technology transfer.

⁹ In contrast with Aw *et al.* (2009), Constantini and Melitz (2008) do not allow for the possibility of learning-by-exporting, the positive effect of exporting on firm productivity.

these models include the following two step mechanism: exporting (or innovation) improves firm productivity, which subsequently makes that firm more likely to self-select into innovation (or exporting). In this study, we conduct the empirical analysis by taking the broad implications from the theoretical studies discussed above.

3. Data and Descriptive Analysis

3.1. Data

This study utilizes two data sets. The first one is the unpublished plant-level census data underlying the *Survey of Mining and Manufacturing* in Korea. The data set covers all plants with five or more employees in 580 manufacturing industries at KSIC (Korean Standard Industrial Classification) five-digit level. It is an unbalanced panel data with about 69,000 to 97,000 plants for each year from 1990 to 1998. For each year, the amount of exports as well as other variables related to production structure of plants, such as production, shipments, the number of production and non-production workers and the tangible fixed investments are available. The exports in this data set include direct exports and shipments to other exporters and wholesalers, but do not include shipments for further manufacture.

The second data set is plant-product data set for the same period. For most plants covered in the plant-level census data (about 80 percent of plants in terms of the number of plants), this data set contains information on the value of shipments of each product produced by plants. It also has information on plant identification number that will be used to link this data set to the plant-level census data. Product is defined at an 8-digit level. The eight-digit product code is constructed using a

combination of the eight-digit KSIC (Korea Standard Industrial Classification) code and the three-digit product code which follows the Statistics Office's internal product classification scheme.

3.2. Descriptive Analysis

Table 1.a. - Table 1.c. show the distribution of plants for various years according to their exporting and innovation status. In order to measure the innovation status of a plant, we consider three variables: R&D expenditure, Product Adding, and Product Creation. For each variable, the innovation status of a plant in a certain year is one if that variable takes a positive value in that year, and zero if that variable takes a value of zero. Product Adding is the number of products a plant added for the past one year, while Product Creation is the number of products a plant newly introduced into the economy. So, an added product is a product that is new to the firm, and a created product is a product that is new to the aggregate economy. The latter is also necessarily the former, but not necessarily vice versa.

Table 1.a shows that from 15 to 20 percent of plants were engaged in R&D, exporting, or both, depending on year. There are more plants which exported than plants which did R&D; from 5.8 to 8.6 percent of plants did R&D while from 11.1 to 16.0 percent of plants did R&D. Plants that did both R&D and exporting accounted for a small proportion of plants—from 2.2 to 3.7 percent of plants. If we measure innovation as Product Adding, then the proportion of plants that added at least one product over the previous year becomes much larger; plants that added some products accounts for between 33.6 and 56.1 percent of all plants with five or more employees (Table 1.b.). A large portion of plants added some products but did not export, and a much smaller proportion of plants both added some products and

exported. If we measure innovation with our product-creation measure, the percentage of innovator plants drops significantly, which is as expected. Plants which created at least one product account for between 1.6 and 9.4 percent of plants, depending on the year.

Table 1.a: Summary of Exporting and Innovation Activities: R&D Expenditure

Veen	Investment Activity					
Year	No R&D / No Exporting	R&D only	Exporting only	Both R&D and Exporting		
1001	53518	2161	8656	1735		
1991	(81.0)	(3.3)	(13.1)	(2.6)		
1992	54326	2061	8918	1809		
1992	(80.9)	(3.1)	(13.3)	(2.7)		
1993	67715	3299	8590	2073		
1993	(82.9)	(4.0)	(10.5)	(2.5)		
1994	70104	3404	8409	2030		
1994	(83.5)	(4.1)	(10.0)	(2.4)		
1995	74213	3516	8323	2057		
1995	(84.2)	(4.0)	(9.5)	(2.3)		
1996	75799	3567	7989	1977		
1990	(84.9)	(4.0)	(8.9)	(2.2)		
1997	71862	3150	8427	2092		
1997	(84.0)	(3.7)	(9.9)	(2.5)		
5	58866	3590	8370	2710		
1998	(80.1)	(4.9)	(11.4)	(3.7)		

Table 1.b: Summary of Exporting and Innovation Activities: Product Adding

X 7	Investment Activity						
Year	No Adding / No Exporting	Adding only	Exporting only	Both Adding and Exporting			
1001	14814	18357	3704	5281			
1991	(35.1)	(43.6)	(8.8)	(12.5)			
1992	21109	12505	5309	4199			
1992	(49.0)	(29.0)	(12.3)	(9.7)			
1002	19972	15535	4540	4296			
1993	(45.0)	(35.0)	(10.2)	(9.7)			
1004	27327	14617	5814	3451			
1994	(53.4)	(28.5)	(11.4)	(6.7)			
1005	25888	15587	5580	3445			
1995	(51.3)	(30.9)	(11.1)	(6.8)			
1007	31025	15785	5678	3266			
1996	(55.7)	(28.3)	(10.2)	(5.9)			
1007	30604	14806	5808	3614			
1997	(55.8)	(27.0)	(10.6)	(6.6)			
1000	21898	16022	5348	4468			
1998	(45.9)	(33.6)	(11.2)	(9.4)			

Table 1.c.: Summary of Exporting and Innovation Activities: Product Creation

Year	Investment Activity						
ieai	No Creation / No Exporting	Creation only	Exporting only	Both Creation and Exporting			
1001	26445	6726	6745	2240			
1991	(62.7)	(16.0)	(16.0)	(5.3)			
1992	32372	1242	9028	480			
1992	(75.1)	(2.9)	(20.9)	(1.1)			
1993	33320	2187	8208	628			
1993	(75.1)	(4.9)	(18.5)	(1.4)			
1994	41322	622	9065	200			
1774	(80.7)	(1.2)	(17.7)	(0.4)			
1995	40937	538	8796	229			
1993	(81.1)	(1.1)	(17.4)	(0.5)			
1996	46039	771	8759	185			
1770	(82.6)	(1.4)	(15.7)	(0.3)			
1997	44225	1185	8886	536			
1991	(80.7)	(2.2)	(16.2)	(1.0)			
1998	34294	3626	8943	873			
1770	(71.8)	(7.6)	(18.7)	(1.8)			

Table 2.a.- Table 2.c. show various plant characteristics (mean values) according to the exporting and innovation status of plants. Generally speaking, exporters are larger, more productive¹⁰, and more capital- and skill-intensive, which is consistent with many previous studies. However, we cannot say in general that exporters are more R&D-intensive (=R&D/shipments). For example, among the plants that do R&D, exporters have lower R&D intensity than non-exporters (4.7 vs. 9.7 percent in 1991, Table 4). Meanwhile, innovator plants are generally larger, more productive, and more capital- and skill-intensive than non-innovator plants, regardless of how we measure innovation. The above results are particularly driven by those plants that both export and innovate. That is, plants that both export and innovate are generally larger, more productive, and more capital- and skill-intensive than the other

-

¹⁰ The productivity of a plant is estimated as (a logarithm of) plant TFP following Levinsohn and Petrin (2003).

categories of plants by substantive margins. 11

Table 2.a: Comparison of Plant Characteristics between Exporters and Nonexporters and Innovators and Non-innovators: R&D Expenditure

		Non-exp	orters	Expor	ters
		Non-innovators	Innovators	Non-innovators	Innovators
	Shipments(Won)	965.02	6821.52	6718	41447
	Worker(person)	22	74	89	379
	Value added Per Worker	14	20	18	27
1991	LPIntfp	2.5	2.8	2.8	3.1
	Capital per Worker	14	20	18	46
	Skill intensity	17	31	24	33
	R&D/Production	0.0	9.7	0.0	4.7
	Shipment(Won)	1255	5797	10077	71902
	Worker(person)	18	52	71	328
	Value added Per Worker	23	33	34	44
1995	LPIntfp	2.7	2.9	3.0	3.3
	Capital per Worker	23	34	37	55
	Skill intensity	17	30	26	33
	R&D/Production	0.0	11.1	0.0	4.8
	Shipment(Won)	1597	5492	12742	70791
	Worker(person)	16	40	57	222
	Value added Per Worker	29	39	48	59
1998	LPIntfp	2.7	3.0	3.1	3.3
	Capital per Worker	36	50	59	79
	Skill intensity	18	32	27	35
	R&D/Production	0.0	10.4	0.0	5.0

Again, when we measure innovation with R&D expenditure, plants that both innovate and export are not necessarily those with the highest R&D intensity.

Table 2.b: Comparison of Plant Characteristics between Exporters and Nonexporters and Innovators and Non-innovators: Product Adding

		Non-exp	orters	Expor	ters
		Non-innovators	Innovators	Non-innovators	Innovators
	Shipment(Won)	1438	1871	9865	17016
	Worker(person)	24	29	115	178
	Value added Per Worker	16	16	21	20
1991	LPIntfp	2.5	2.6	2.9	2.9
	Capital per Worker	19	17	21	22
	Skill intensity	19	21	24	27
	R&D/Production	0.2	0.5	0.6	0.8
	Shipment(Won)	2258	2084	18452	36095
	Worker(person)	23	24	107	184
	Value added Per Worker	27	27	37	37
1995	LPIntfp	2.7	2.8	3.1	3.1
	Capital per Worker	32	29	43	45
	Skill intensity	21	22	27	29
	R&D/Production	0.5	0.7	0.7	1.1
	Shipment(Won)	2577	2378	18393	43170
	Worker(person)	19	21	82	134
	Value added Per Worker	34	32	50	55
1998	LPIntfp	2.7	2.8	3.1	3.2
	Capital per Worker	51	41	66	74
	Skill intensity	23	22	28	31
	R&D/Production	0.4	0.7	1.0	1.3

Table 2.c: Comparison of Plant Characteristics between Exporters and Nonexporters and Innovators and Non-innovators: Product Creation

		Non-exp	orters	Expor	ters
		Non-innovators	Innovators	Non-innovators	Innovators
	Shipment(Won)	1616	1920	11499	21801
	Worker(person)	26	30	126	231
	Value added Per Worker	16	17	21	19
1991	LPIntfp	2.5	2.6	2.9	2.8
	Capital per Worker	18	18	22	22
	Skill intensity	20	22	26	26
	R&D/Production	0.3	0.5	0.7	0.8
	Shipment(Won)	2188	2530	22540	26839
	Worker(person)	23	27	128	459
	Value added Per Worker	27	27	37	40
1995	LPIntfp	2.8	2.8	3.1	3.2
	Capital per Worker	31	24	44	46
	Skill intensity	21	23	28	29
	R&D/Production	0.5	1.3	0.8	1.5
	Shipment(Won)	2556	1895	26436	62801
	Worker(person)	20	19	100	172
	Value added Per Worker	34	28	52	52
1998	LPIntfp	2.8	2.8	3.2	3.3
	Capital per Worker	49	28	71	55
	Skill intensity	23	18	29	34
	R&D/Production	0.5	0.6	1.1	1.5

In Table 3.a - Table 5.b, we examine whether past innovation activity affects the switches from non-exporter to exporter for the three different measures of innovation. With regard to the other direction of causality, we examine whether past exporting activity affects the switches from non-innovator to innovator. Broadly speaking, the tables indicate the possible bi-directional causality between exporting and innovation. Table 3.1 shows that, among the plants that did not do R&D in period t-1, about 4.9 percent of plants switched from non-exporter to exporter. In contrast, among those plants that did R&D in period t-1, 14.5 percent of them switched from non-exporter to exporter. If we allow for the possibility that current innovation decision is also correlated with the current exporting decision, about 18.7 percent (=(176+129+142)/1932) of the switchers from non-exporter to exporter are accounted for by innovators (i.e., those who did R&D). The role of exporting in accounting for switches from non-innovator to innovator is somewhat more pronounced, which is shown at Table 3.2. Among the plants that did not export in period t-1, only 2.4 percent switched from non-innovator at year t-1 to innovator in year t. In contrast, as much as 44.3 percent of plants that exported in year t-1 switched to innovation.

The story is more or less similar when we measure innovation by Product Creation (Table 5.a. and Table 5.b.). That is, although we do see some evidence that past or current product creation is important for the switches from non-exporter to exporter, the evidence for the other direction of causality is a little bit more stronger. For example, about 25.3 percent of switchers from non-exporter to exporter were innovators (creators) at year t-1 or t, while about 31.7 percent of switchers from non-innovator to innovator were exporters at year t-1 or t. When we measure innovation by Product Adding, however, the story is somewhat different. Here, the evidence is

stronger on the causation from product adding to switching to exporting, rather than the other way around. We caution, however, against any strong conclusion on the causality between innovation and exporting based on the above descriptive analyses.

Table 3.a: Transition Matrix Conditional on Exp_{t-1}=0: R&D Expenditure, 1991-1992

	$Exp_{t} Exp_{t-1}=0$			
	0		1	
	$\mathbf{R} \mathbf{\&} \mathbf{D}_{t} = 0$	$\mathbf{R} \mathbf{\&} \mathbf{D}_{t} = 1$	$\mathbf{R} \mathbf{\&} \mathbf{D}_{t} = 0$	$\mathbf{R} \mathbf{\&} \mathbf{D}_{t} = 1$
Den a	40281	853	1932	176
$\mathbf{R\&D_{t-1}} = 0$	(93.2)	(2.0)	(4.5)	(0.4)
Den 1	906	698	129	142
$R\&D_{t-1}=1$	(48.3)	(37.2)	(6.9)	(7.6)

Table 3.b: Transition Matrix Conditional on R&D_{t-1}=0: 1991-1992

	$\mathbf{R}\mathbf{\&}\mathbf{D}_{t} \mathbf{R}\mathbf{\&}\mathbf{D}_{t-1}\!\!=\!\!0$			
	0		1	
	$\mathbf{E}\mathbf{x}\mathbf{p}_{t}=0$	$\mathbf{E}\mathbf{x}\mathbf{p}_{t} = 1$	$\mathbf{E}\mathbf{x}\mathbf{p}_{t}=0$	$\mathbf{E}\mathbf{x}\mathbf{p}_{t} = 1$
Exp _{t-1} =0	40281	1932	853	176
	(93.2)	(4.5)	(2.0)	(0.4)
$Exp_{t-1}=1$	1557	5340	50	452
	(21.0)	(72.2)	(0.7)	(6.1)

Table 4.a: Transition Matrix Conditional on Exp_{t-1}=0: Product Adding, 1991-1992

	$Exp_{t} Exp_{t-1}=0$			
	0		1	
	$Adding_t = 0$	$Adding_t = 1$	$Adding_t = 0$	$Adding_t = 1$
A 112 0	8733	2715	456	236
$Adding_{t-1}=0$	(71.9)	(22.4)	(3.8)	(1.9)
A J J 1	7633	5555	507	517
Adding _{t-1} =1	(53.7)	(39.1)	(3.6)	(3.6)

Table 4.b: Transition Matrix Conditional on Adding_{t-1}=0: 1991-1992

	$\mathbf{Adding_{t}} \mathbf{Adding_{t-1}}\!\!=\!\!0$			
	0			1
	$\mathbf{Exp_t} = 0$	$\mathbf{Exp_t} = 1$	$\mathbf{Exp_t} = 0$	$\mathbf{Exp_t} = 1$
F 0	8733	456	2715	236
$Exp_{t-1}=0$	(71.9)	(3.8)	(22.4)	(1.9)
Exp _{t-1} =1	368	1783	176	875
	(11.5)	(55.7)	(5.5)	(27.3)

Table 5.a: Transition Matrix Conditional on Exp_{t-1}=0: Product Creation, 1991-1992

	$\operatorname{Exp}_{t} \operatorname{Exp}_{t-1}=0$				
	0		1		
	$Creation_t = 0$	$Creation_t = 1$	$Creation_t = 0$	$Creation_t = 1$	
Constitution 0	9002	704	1281	54	
Creation _{t-1} =0	(90.3)	(3.3)	(6.1)	(0.3)	
Creation -1	4717	213	361	20	
Creation _{t-1} =1	(88.8)	(4.0)	(6.8)	(0.4)	

Table 5.b: Transition Matrix Conditional on Creation_{t-1}=0: 1991-1992

	Creation _{t-1} =0			
	0		1	
	$\mathbf{E}\mathbf{x}\mathbf{p_t} = 0$	$\mathbf{E}\mathbf{x}\mathbf{p}_{t} = 1$	$\mathbf{E}\mathbf{x}\mathbf{p_t} = 0$	$\mathbf{E}\mathbf{x}\mathbf{p}_{t} = 1$
	9002	1281	704	54
$Exp_{t-1}=0$	(90.3)	(6.1)	(3.3)	(0.3)
T .	982	4524	47	225
$Exp_{t-1}=1$	(17.0)	(78.3)	(0.8)	(3.9)

4. Main Empirical Analysis: Propensity Score Matching

4.1. Methodology

We use propensity score matching procedure as explained in Becker and Ichino (2002) to estimate the effect of exporting on innovation and vice versa. The specific

procedure used in this paper is adapted from Damijan *et al.* (2010). In this paper, we estimate the average effect of innovation (exporting) at year t-1 on exporting (innovation) status at year t. We use two measures of innovation status: a dummy variable for product adding and a dummy variable for product creation, respectively. As explained before, product adding for a plant at year t is the number of products new to the plant that have been introduced by the plant, and product creation is the number of products new to the economy that have been introduced by the plant, between year t-1 and t. The dummy variable for innovation status takes the value of one if product adding (or creation) is positive, and zero if product adding (or creation) is zero. The dummy variable for exporting status is defined similarly. The treatment variable is innovation status or exporting status at year t-1. The corresponding outcome variable is exporting status or innovation status at year t, respectively.

In order to estimate the effect of innovation to exporting, we match innovators with non-innovators at year t-1 out of non-exporters at year t-1, based on the estimated probability of innovation at year t-1. Similarly, we match exporters with non-exporters at year t-1 out of non-innovators at year t-1, based on the estimated probability of exporting at year t-1 in order to estimate the effect of exporting on innovation. The probability of innovation or exporting is estimated from a probit model, which is specified as follows.

Innovation Probability:

$$Prob(Innov_{t-1} = 1) = f(X_{t-1})$$

Exporting Probability

$$Prob(Exp_{t-1} = 1) = f(X_{t-1})$$

Here, X is a vector of plant characteristics: plant productivity (log LP-TFP), size (log worker), capital intensity (log capital per worker), and R&D intensity (R&D/Production ratio). The probit model is estimated with year and industry dummy variables. We use nearest neighbor matching with common support restriction.

4.2. Results

Table 6 shows the results, with the upper panel for product adding and the lower panel for product creation. We find that there is a significant positive effect of exporting on product creation. In contrast, the effect of product creation on exporting is estimated to be positive but not significant. Nor do we find any significant effect of exporting (product adding) on product adding (exporting): although the effect of exporting on product adding is estimated to be positive, it is not significant.

This finding is consistent with our previous conjecture that product creation is closely related to the international product-cycle phenomenon, while product adding is related to the process of domestic imitation. If this is in fact the case, we would expect that product creation or introduction of new products from the viewpoint of the Korea's economy is at least more strongly related to the firms' or plants' globalization activities—exporting in this case—than product adding. The empirical results in this study support this view.

Regarding the causality from product creation to exporting, we found a small positive effect, however, it was not significant. Based on a simple theoretical framework of North and South trade and innovation, such as Grossman and Helpman (1991b), we have some reasons to expect a positive and significant effect, since there

will be a foreign demand for the product that is newly introduced (imitated) by the South. However, we do not find evidence for such an effect, at least for the Korean manufacturing sector during the 1990s. One possible reason for this is that newly introduced products are mainly shipped first to the domestic market, but not to foreign markets, under various frictions to trade.

Table 6. The Effects of Lagged Innovation (Exporting) on Current Export (Innovation) Status

		Product Adding	
	ATT	se	Number of treated (controls)
Adding to Exporting	-0.002	0.002	105967(52453)
Exporting to Adding	0.008	0.005	36085(20335)
		Product Creation	
	ATT	se	Number of treated (controls)
Creation to Exporting	0.004	0.004	12987(9325)
Exporting to Creation	0.008	0.002	58932(32639)

5. Main Empirical Analysis: Panel VAR

5.1. Methodology

While propensity score matching helps us resolve endogeneity problems through deciphering bi-directional causality among three important variables of interest; innovation, exporting, and productivity¹², it offers little information on complex dynamic inter-dependencies among them. The most important finding from the previous section indicates that exporting activities play a crucial role in stimulating innovation activities, especially when measured by the intensity of new product

¹² In the discussion above, we focused on the bi-directional causality between innovation and exporting only.

creation. Similarly, Hahn and Park (2009) shows that the average productivity gains of exporters is significantly higher than those of non-exporters, which implies that exporting activities may be correlated with subsequent productivity enhancement of exporting firms. However, these findings do not preclude the possibility that the feedback effects from innovation to exporting activities or from productivity gains to exporting activities may occur in subsequent years. In order to examine dynamic inter-relationships among these variables we should take an alternative route, explicitly, by taking dynamic perspectives into consideration. A natural choice would be the vector autoregression (VAR) framework popularized by Sims (1980) in macro-econometric research. Unfortunately, due to the restricted structure of our data set, it is highly doubtful that we would be able to draw a reliable conclusion from the analysis. While VAR requires data series collected from a reasonably long time span, our data set does not seem to include a long enough time span necessary to expect good asymptotic behavior of the estimator. Nonetheless, we may pay attention to the number of cross sectional units observed in our data set as an alternative source of information. Holtz-Eakin et al. (1988) proposed an econometric framework-panel VAR, to derive information on interdependent time paths of economic variables by utilizing sample variations from both time series and cross sectional dimensions. Our data set includes less than 10 time series observations but almost 100,000 cross section units which fit the panel VAR framework pretty well.

Assuming that time-homogeneity of coefficients in the system, we can write the empirical model as;

$$x_{it} = \mu + \sum_{j=1}^{p} \rho_{j} x_{it-j} + \sum_{j=1}^{p} \tau_{j} y_{it-j} + \sum_{j=1}^{p} \vartheta_{j} z_{it-j} + g_{i} + \varepsilon_{it}$$
(1)

$$y_{it} = \alpha + \sum_{j=1}^{p} \beta_j x_{it-j} + \sum_{j=1}^{p} \gamma_j y_{it-j} + \sum_{j=1}^{p} \mu_j z_{it-j} + f_i + u_{it}$$
(2)

$$z_{it} = \theta + \sum_{j=1}^{p} \delta_{j} x_{it-j} + \sum_{j=1}^{p} \pi_{j} y_{it-j} + \sum_{j=1}^{p} \varphi_{j} z_{it-j} + h_{i} + \omega_{it}$$
(3)
$$(i = 1, 2, \dots, N; \ t = 1, 2, \dots, T)$$

where $(x_{it}, y_{it}, z_{it})'$ is a vector of stochastic variables representing exporting status, innovation intensity, and productivity of firm i at time t and $(g_i, f_i, h_i)'$ is the vector of fixed effects for firm i. $(\varepsilon_{it}, u_{it}, \omega_{it})'$ represents statistical disturbances with mean zero and constant variance and none of the disturbance terms is serially correlated but may possess cross-sectional dependencies.

Due to the presence of both individual fixed effects and lagged dependent variables as explanatory variables, it is not possible to obtain a consistent estimator through traditional estimator, such as ordinary least squares in first differences. Holtz-Eakin *et al.* (1988) suggested a simple IV/GMM-based estimator taking advantage of natural orthogonality conditions given by;

$$E[x_{is}\varepsilon_{it}] = E[y_{is}\varepsilon_{it}] = E[z_{is}\varepsilon_{it}] = E[g_{i}\varepsilon_{it}] = 0 (s < t)$$

$$(4)$$

$$E[x_{is}u_{it}] = E[y_{is}u_{it}] = E[z_{is}u_{it}] = E[f_{i}u_{it}] = 0 (s < t)$$

$$(5)$$

$$E[x_{is}\omega_{it}] = E[y_{is}\omega_{it}] = E[z_{is}\omega_{it}] = E[h_{i}\omega_{it}] = 0 (s < t)$$

$$(6)$$

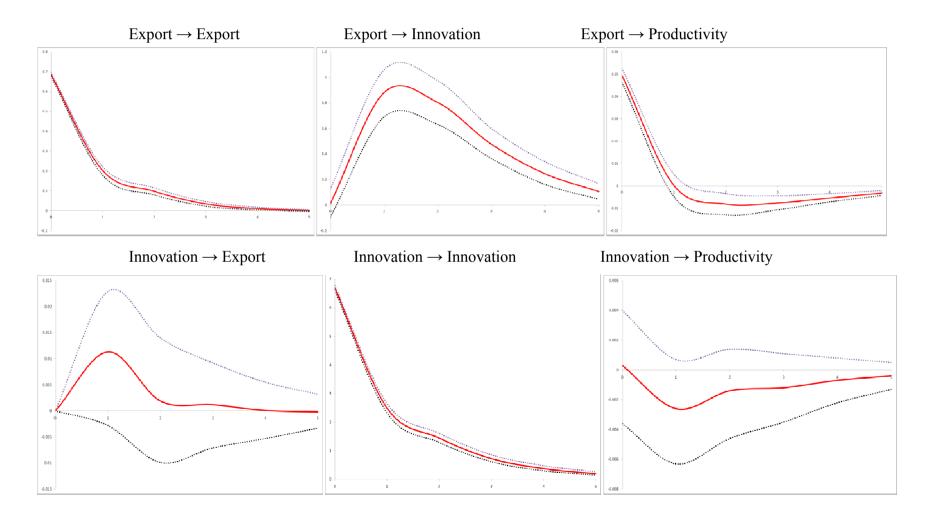
Iterating GMM procedure utilizing the moment conditions in (4), (5), and (6) and

heteroskedasticity and autocorrelation consistent weighting matrix until convergence, we obtain a both consistent and asymptotically efficient estimator.

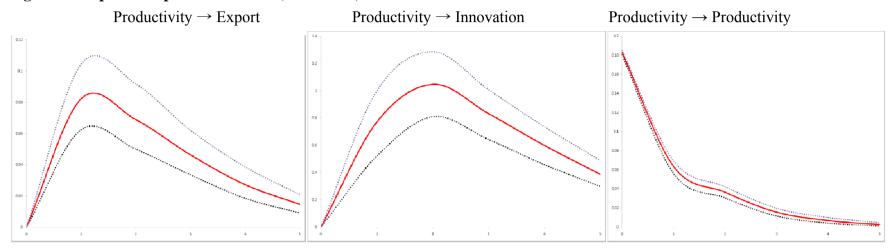
The structure of the covariance matrix of the error terms in (1), (2), and (3) is crucial in the final estimate of impulse-response function. But it is a rare event that economics imposes restrictions on the covariance matrix enough to derive impulse-response function. Following Sims (1980), we try to identify parameters necessary to derive impulse-response function by assuming lower triangular covariance matrix. Under the strategy it is of the utmost importance the way we order the variables in the system. With the help of previous studies on the relationship between export, productivity and innovation, we place the variables in the order of exporting activity, innovation intensity, and productivity. In other words, we assume that the exporting activity of a firm is not affected by the contemporaneous shocks to innovation intensity or productivity, and that the innovation intensity of a firm is affected by contemporaneous shocks to exporting activities but not by those to productivity.

Finally, we choose a continuous version of the variables representing exporting activity and innovation intensity to avoid various econometric problems with dichotomous or count variables in VAR analysis. We measure exporting activity of a firm at year *t* as natural log of the value of exporting product at the year and innovation activity as three-year weighted average of the ratio of the value of shipment of newly created products during the year *t* to the value of total shipment in the year. Finally, productivity of a firm is calculated as explained in Section 3 and natural log is taken.

5.2. Results


Figure 1 illustrates the estimated impulse-response functions along with 95

percent confidence bands calculated by a bootstrapping method¹³. Since a significant proportion of the firms in the sample for a given year are either new entrants or exiting firms, the average time-span of an individual firm is relatively short. In a practical perspective, it does not make much sense to allow many time-lags in the autoregressive part in the regression so that we estimate the model with two time-lags.


_

¹³ Bootstrapping estimates was calculated based on 200 iterations.

Figure 1: Impulse Response Functions

Figure 1: Impulse Response Functions (Continued)

Three notable patterns can be pointed out from the analysis. First, a positive exogenous shock to exporting activities seems to stimulate innovation intensity of the firm. Responses to innovation intensity show quite a persistent pattern, that is, it takes more than five years for the impacts of the initial shock to exporting activities to completely die out. The finding that exporting activities may have strong and lasting positive effects on innovation is consistent with earlier research findings that participation in export markets may stimulate innovation in the following year. On the other hand, the initial response of productivity shocks to exporting activity is quite strong but the impacts completely die out after one year.

Second, positive exogenous shocks to innovation intensity affect neither exporting activities nor productivity of a firm. Exporting activities seem to surge immediately in response to exogenous shock to innovation intensity but a 95 percent confidence band indicates that one cannot insist the statistical significance of the pattern. The impacts of innovation shock do not affect productivity of a firm even in the year the initial shock hits the economy.

Third, a positive productivity shock seems to stimulate both exporting activity and innovation intensity of a firm. While two-thirds of the total impact on exporting activity is realized within 2 years, impact on innovation intensity shows more persistent pattern that it can still be detected in a significant magnitude even five years after the initial shock. Therefore, one can infer that the impacts of productivity shocks may be materialized relatively faster in exporting activity than in innovation intensity.

6. Concluding Remarks

In this paper, we examined various possible bi-directional causal relationships among exporting, innovation, and productivity using both propensity score matching technique and panel VAR methodology. We distinguished between two types of product innovation: product adding and new product introduction. Based on propensity score matching technique, we found a significant positive effect of exporting on new product introduction, which is consistent with the similar study by Hahn (2010). The effect from the other direction of causality was estimated to be positive but not significant. This seems to suggest the possibility that when new products are introduced they tend to be first introduced at domestic market level. We could not find any significant effect of exporting on product adding or of the effect the other way around. The three variable panel VAR estimation results are broadly consistent with these results. Exporting has a significantly positive effect on new product introduction and productivity, but new product introduction does not have a significant effect on exporting or productivity. Lastly, plant productivity has a significantly positive effect on both exporting and new product introduction. Overall, this paper suggests an important role of exporting as well as productivity in promoting new product introduction, but no significant role of new product introduction on exporting and productivity.

One of the policy implications of this study is that liberalized trade, at the least, should be seriously considered as a prerequisite when designing an innovation policy framework aimed at new product introduction. Thinking that new product introduction is an outcome of only innovation efforts by both the private and public sectors might be

seriously mistaken. Another policy implication of this study is that, even when increasing exports or increasing the number of exporters is a policy objective, introduction of new products or any domestic policies to promote it might not bring about immediate export gains. Finally, the positive effect of becoming an exporter on new product introduction and productivity suggests that there might be some ground for policies to increase the number of exporters. Even within the WTO rules that prohibit export subsidies, policies which facilitate firms to participate in export markets is likely to bring about dynamic benefits over-and-above static gains from trade.

References

- Aw, Bee Yan, Mark J. Roberts, and Daniel Yi Xu (2009), 'R&D Investment, Exporting, and Productivity Dynamics', *NBER Working Paper*, No. 14670.
- Becker S. and Peter Egger (2007), 'Endogenous Product Versus Process Innovation and a Firm's Propensity Switching', *CESIFO Working Paper*, No. 9789.
- Bernard, Andrew B., and J. B. Jensen (1999), 'Exceptional Exporter Performance: Cause, Effect, or Both?', *Journal of International Economics* 47, pp.1-25.
- Bernard, Andrew B., Stephen J. Redding, and Peter K. Schott (2007), 'Comparative Advantage and Heterogeneous Firms', *Review of Economic Studies* 74(1), pp.31—66.
- Bernard, Andrew B., Stephen J. Redding, and Peter K. Schott. (2006), 'Multi-product Firms and Trade Liberalization', *NBER Working Paper*, No. w12782.
- Bernard, Andrew B., Stephen J. Redding, and Peter K. Schott. (2009), 'Multi-product Firms and Product Switching', *American Economic Review*, forthcoming.
- Cassiman, Bruno and Elena Golovko (2007), 'Innovation and the Export Productivity Link', IESE Business School, *mimeo*.
- Cassiman, Bruno and Ester Martinez-Ros (2007), 'Product Innovation and Exports. Evidence from Spanish Manufacturing', IESE Business School, *mimeo*.
- Costantini, James A. and Marc J. Melitz (2008), 'The Dynamics of Firm-Level Adjustment to Trade Liberalization', *mimeo*.
- Damijan, Joze P., Crt Kostevec, and Saso Polance (2008), 'From Innovation to Exporting or Vice Versa?', *Institute for Economic Research*, *Working Paper*, No.43.
- Ebling, Günther and Norbert Janz (1999), 'Export and Innovation Activities in the German Service Sector: Empirical Evidence at the Firm Level', *ZEW Discussion Paper*, No.99-53.

- Feenstra, Robert, Dorsati Madani, Tzu-Han Yang and Chi-Yuan Liang (1999), 'Testing Endogenous Growth in South Korea and Taiwan', *Journal of Development Economics* 60, pp.317-341.
- Greenaway, David and Richard Kneller (2007), 'Firm Heterogeneity, Exporting and Foreign Direct Investment', *Economic Journal* 117, pp.134-161.
- Grossman, Gene M., and Helpman, Elhanan. (1991a.), *Innovation and Growth in the Global economy*. MIT Press.
- Grossman, Gene M., and Helpman, Elhanan. (1991b), 'Quality Ladders and Product Cycles', *Quarterly Journal of Economics* 106, pp.557-586.
- Hahn, Chin Hee (2010), 'Does Exporting Promote New Product Introduction?: Evidence from Plant-Product Data on Korean Manufacturing', *FREIT Working Paper 100112*.
- Hahn, Chin Hee and Chang-Gyun Park (2009), 'Learning by Exporting in Korean Manufacturing: A Plant Level Analysis', *ERIA Discussion Paper Series*. No, 2009-04
- Lachenmaier, Stefan and Ludger Wöβmann (2006), 'Does Innovation Cause Exports? Evidence from Exogenous Innovation Impulses and Obstacles Using German Micro Data', *Oxford Economic Paper* 58, pp.317-350.
- Levinsohn, James and Amil Petrin (2003), 'Estimating Production Functions Using Inputs to Control for Unobservables', *The Review of Economic Studies*70(2), pp.317-341.
- Melitz, Marc J. (2003), 'The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity', *Econometrica* 71(6), pp.1695—1725.
- Romer, P. (1990), 'Endogenous Technological Change', *Journal of Political Economy* 98(5), pp.S71-S102.
- Roper, Stephen and James H. Love (2002), 'Innovation and Export Performance: Evidence from UK and German Manufacturing Plants', *Research Policy* 31, pp.1087-1102.
- Salomon, Robert M. and J. Myles Shaver (2005), 'Learning by Exporting: New Insights from Examining Firm Innovation', *Journal of Economics and Management Strategy* 14(2), pp.431-460.

- Sims, C. A. (1980), 'Macroeconomics and Reality', Econometrica 48(1), pp.1-48.
- Stokey, Nancy (1988), 'Learning-by-Doing and the Introduction of New Goods', *Journal of Political Economy* 96, pp.701-717.
- Vernon, Raymond. (1966), 'International Investment and International Trade in the Product Cycle', *Quarterly Journal of Economics* 80, pp.190-207.

Appendix

Table A1.1. Transition Matrix Conditional on Exp_{t-3}=0: R&D Expenditure, 1991-1994

	$\mathbf{Exp_t} \mathbf{Exp_{t-3}}=0$			
	0		1	
	$\mathbf{R} \mathbf{\&} \mathbf{D}_{t} = 0$	$\mathbf{R} \mathbf{\&} \mathbf{D_t} = 1$	$\mathbf{R} \mathbf{\&} \mathbf{D}_{t} = 0$	$\mathbf{R} \mathbf{\&} \mathbf{D}_{t} = 1$
D.C.D.	27446	1209	1764	291
$\mathbf{R\&D_{t-3}=0}$	(89.4)	(3.9)	(5.7)	(0.9)
D0D 1	903	324	141	126
$R\&D_{t-3}=1$	(60.4)	(21.7)	(9.4)	(8.4)

Table A1.2. Transition Matrix Conditional on R&D_{t-3}=0: 1991-1994

	$R\&D_t R\&D_{t\cdot3}=0$			
	0		1	
	$\mathbf{Exp_t} = 0$	$\mathbf{Exp_t} = 1$	$\mathbf{Exp_t} = 0$	$\mathbf{Exp_t} = 1$
F 0	27446	1764	1209	291
$\operatorname{Exp}_{t-3}=0$	(89.4)	(5.7)	(3.9)	(0.9)
F 1	1875	3159	144	511
$Exp_{t-3}=1$	(33.0)	(55.5)	(2.5)	(9.0)

Table A2.1. Transition Matrix Conditional on Exp_{t-3}=0: Product Adding, 1991-1994

	$\mathbf{Exp_{t}} \mathbf{Exp_{t-3}}\mathbf{=0}$			
)		1
	$Adding_t = 0$	$Adding_t = 1$	$Adding_t = 0$	$Adding_t = 1$
A.1.P 0	6106	1935	511	203
Adding _{t-3} =0	(69.7)	(22.1)	(5.8)	(2.3)
A 335 1	5756	3569	559	464
$Adding_{t-3}=1$	(55.6)	(34.5)	(5.4)	(4.5)

Table A2.2. Transition Matrix Conditional on Adding_{t-3}=0: 1991-1994

	$\mathbf{Adding}_{t} \mathbf{Adding}_{t\text{-}3}\!\!=\!\!0$			
	0		1	
	$\mathbf{Exp_t} = 0$	$\mathbf{E}\mathbf{x}\mathbf{p}_{t} = 1$	$\mathbf{E}\mathbf{x}\mathbf{p_t} = 0$	$\mathbf{Exp_t} = 1$
E 0	6106	511	1935	203
$Exp_{t-3}=0$	(69.7)	(5.8)	(2.1)	(2.3)
E 1	519	1293	189	519
Exp _{t-3} =1	(20.6)	(51.3)	(7.5)	(0.6)

Table A3.1. Transition Matrix Conditional on Exp_{t-3}=0: Product Creation, 1991-1994

	$\mathbf{Exp_{t}} \mathbf{Exp_{t-3}}=0$			
	0		1	
	$Creation_t = 0$	$Creation_t = 1$	$Creation_t = 0$	Creation _t = 1
G (* 0	13613	187	1356	31
Creation _{t-3} =0	(89.6)	(1.2)	(8.9)	(0.2)
G # 1	3479	87	344	6
Creation _{t-3} =1	(88.8)	(2.2)	(8.8)	(0.2)

Table A3.2. Transition Matrix Conditional on Creation_{t-3}=0: 1991-1994

	$Creation_t Creation_{t-3}=0$			
	0		1	
	$\mathbf{Exp_t} = 0$	$\mathbf{Exp_t} = 1$	$\mathbf{Exp_t} = 0$	$\mathbf{Exp_t} = 1$
E 0	13613	1356	187	31
$Exp_{t-3}=0$	(89.6)	(8.9)	(1.2)	(0.2)
Erm _1	1315	3145	21	73
Exp _{t-3} =1	(28.9)	(69.1)	(0.5)	(1.6)

ERIA Discussion Paper Series

No.	Author(s)	Title	Year
2012-07	Chin Hee HAHN and Chang-Gyun PARK	Direction of Causality in Innovation-Exporting Linkage: Evidence on Korean Manufacturing	June 2012
2012-06	Keiko ITO	Source of Learning-by-Exporting Effects: Does Exporting Promote Innovation?	June 2012
2012-05	Rafaelita M. ALDABA	Trade Reforms, Competition, and Innovation in the Philippines	June 2012
2012-04	Toshiyuki MATSUURA and Kazunobu HAYAKAWA	The Role of Trade Costs in FDI Strategy of Heterogeneous Firms: Evidence from Japanese Firm- level Data	June 2012
2012-03	Kazunobu HAYAKAWA, Fukunari KIMURA, and Hyun-Hoon Lee	How Does Country Risk Matter for Foreign Direct Investment?	Feb 2012
2012-02	Ikumo ISONO, Satoru KUMAGAI, Fukunari KIMURA	Agglomeration and Dispersion in China and ASEAN: a Geographical Simulation Analysis	Jan 2012
2012-01	Mitsuyo ANDO and Fukunari KIMURA	How Did the Japanese Exports Respond to Two Crises in the International Production Network?: The Global Financial Crisis and the East Japan Earthquake	Jan 2012
2011-10	Tomohiro MACHIKITA and Yasushi UEKI	Interactive Learning-driven Innovation in Upstream-Downstream Relations: Evidence from Mutual Exchanges of Engineers in Developing Economies	Dec 2011
2011-09	Joseph D. ALBA, Wai- Mun CHIA, and Donghyun PARK	Foreign Output Shocks and Monetary Policy Regimes in Small Open Economies: A DSGE Evaluation of East Asia	Dec 2011
2011-08	Tomohiro MACHIKITA and Yasushi UEKI	Impacts of Incoming Knowledge on Product Innovation: Econometric Case Studies of Technology Transfer of Auto-related Industries in Developing Economies	Nov 2011
2011-07	Yanrui WU	Gas Market Integration: Global Trends and Implications for the EAS Region	Nov 2011
2011-06	Philip Andrews-SPEED	Energy Market Integration in East Asia: A Regional Public Goods Approach	Nov 2011

2011-05	Yu SHENG,	Energy Market Integration and Economic Convergence:	Oct 2011
	Xunpeng SHI	Implications for East Asia	2011
2011-04	Sang-Hyop LEE, Andrew MASON, and Donghyun PARK	Why Does Population Aging Matter So Much for Asia? Population Aging, Economic Security and Economic Growth in Asia	Aug 2011
2011-03	Xunpeng SHI, Shinichi GOTO	Harmonizing Biodiesel Fuel Standards in East Asia: Current Status, Challenges and the Way Forward	May 2011
2011-02	Hikari ISHIDO	Liberalization of Trade in Services under ASEAN+n: A Mapping Exercise	May 2011
2011-01	Kuo-I CHANG, Kazunobu HAYAKAWA Toshiyuki MATSUURA	Location Choice of Multinational Enterprises in China: Comparison between Japan and Taiwan	Mar 2011
2010-11	Charles HARVIE, Dionisius NARJOKO, Sothea OUM	Firm Characteristic Determinants of SME Participation in Production Networks	Oct 2010
2010-10	Mitsuyo ANDO	Machinery Trade in East Asia, and the Global Financial Crisis	Oct 2010
2010-09	Fukunari KIMURA Ayako OBASHI	International Production Networks in Machinery Industries: Structure and Its Evolution	Sep 2010
2010-08	Tomohiro MACHIKITA, Shoichi MIYAHARA, Masatsugu TSUJI, and Yasushi UEKI	Detecting Effective Knowledge Sources in Product Innovation: Evidence from Local Firms and MNCs/JVs in Southeast Asia	Aug 2010
2010-07	Tomohiro MACHIKITA, Masatsugu TSUJI, and Yasushi UEKI	How ICTs Raise Manufacturing Performance: Firm-level Evidence in Southeast Asia	Aug 2010
2010-06	Xunpeng SHI	Carbon Footprint Labeling Activities in the East Asia Summit Region: Spillover Effects to Less Developed Countries	July 2010
2010-05	Kazunobu HAYAKAWA, Fukunari KIMURA, and Tomohiro MACHIKITA	Firm-level Analysis of Globalization: A Survey of the Eight Literatures	Mar 2010
2010-04	Tomohiro MACHIKITA and Yasushi UEKI	The Impacts of Face-to-face and Frequent Interactions on Innovation: Upstream-Downstream Relations	Feb 2010

2010-03	Tomohiro MACHIKITA and Yasushi UEKI	Innovation in Linked and Non-linked Firms: Effects of Variety of Linkages in East Asia	Feb 2010
2010-02	Tomohiro MACHIKITA and Yasushi UEKI	Search-theoretic Approach to Securing New Suppliers: Impacts of Geographic Proximity for Importer and Non-importer	Feb 2010
2010-01	Tomohiro MACHIKITA and Yasushi UEKI	Spatial Architecture of the Production Networks in Southeast Asia: Empirical Evidence from Firm-level Data	Feb 2010
2009-23	Dionisius NARJOKO	Foreign Presence Spillovers and Firms' Export Response: Evidence from the Indonesian Manufacturing	Nov 2009
2009-22	Kazunobu HAYAKAWA, Daisuke HIRATSUKA, Kohei SHIINO, and Seiya SUKEGAWA	Who Uses Free Trade Agreements?	Nov 2009
2009-21	Ayako OBASHI	Resiliency of Production Networks in Asia: Evidence from the Asian Crisis	Oct 2009
2009-20	Mitsuyo ANDO and Fukunari KIMURA	Fragmentation in East Asia: Further Evidence	Oct 2009
2009-19	Xunpeng SHI	The Prospects for Coal: Global Experience and Implications for Energy Policy	Sept 2009
2009-18	Sothea OUM	Income Distribution and Poverty in a CGE Framework: A Proposed Methodology	Jun 2009
2009-17	Erlinda M. MEDALLA and Jenny BALBOA	ASEAN Rules of Origin: Lessons and Recommendations for the Best Practice	Jun 2009
2009-16	Masami ISHIDA	Special Economic Zones and Economic Corridors	Jun 2009
2009-15	Toshihiro KUDO	Border Area Development in the GMS: Turning the Periphery into the Center of Growth	May 2009
2009-14	Claire HOLLWEG and Marn-Heong WONG	Measuring Regulatory Restrictions in Logistics Services	Apr 2009
2009-13	Loreli C. De DIOS	Business View on Trade Facilitation	Apr 2009
2009-12	Patricia SOURDIN and Richard POMFRET	Monitoring Trade Costs in Southeast Asia	Apr 2009

Apr 2009 Apr
Anr
2009
Mar 2009
Jan 2009
Dec 2008
Dec 2008
Dec 2008